Optimal EEG Data Segmentation in LSTM Networks for Learning Neural Dynamics of ADHD

I-Wen Huang, Yang Chang, Cory Stevenson, I. Chen, Dar-Shong Lin, L. Ko
{"title":"Optimal EEG Data Segmentation in LSTM Networks for Learning Neural Dynamics of ADHD","authors":"I-Wen Huang, Yang Chang, Cory Stevenson, I. Chen, Dar-Shong Lin, L. Ko","doi":"10.1109/ICSSE55923.2022.9948260","DOIUrl":null,"url":null,"abstract":"Attention deficit/hyperactivity disorder (ADHD) is a condition that generally affects the neurodevelopment of children. Both electroencephalography (EEG) and continuous performance tests (CPT) can be used not only to provide objective identification ADHD, but also to directly observe and quantify the performance of subject task performance. In this study, we propose an optimized segmentation for learning EEG time-series information with long short-term memory (LSTM) networks used to differentiate ADHD and neurotypical (NT) children. A total of 30 NT children and 30 children diagnosed with ADHD participated in CPT while simultaneously monitored with EEG. The experimental results show that, whether it is a single feature of beta power at a the O2 electrode location or all the features, the optimal data segment is the same, an EEG segment containing the data from 30 seconds of eyes-open resting and 30 seconds of CPT task. This produced improved performance for discriminating the differences in EEG between the two groups, thus assisting in the diagnosis of ADHD.","PeriodicalId":220599,"journal":{"name":"2022 International Conference on System Science and Engineering (ICSSE)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE55923.2022.9948260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attention deficit/hyperactivity disorder (ADHD) is a condition that generally affects the neurodevelopment of children. Both electroencephalography (EEG) and continuous performance tests (CPT) can be used not only to provide objective identification ADHD, but also to directly observe and quantify the performance of subject task performance. In this study, we propose an optimized segmentation for learning EEG time-series information with long short-term memory (LSTM) networks used to differentiate ADHD and neurotypical (NT) children. A total of 30 NT children and 30 children diagnosed with ADHD participated in CPT while simultaneously monitored with EEG. The experimental results show that, whether it is a single feature of beta power at a the O2 electrode location or all the features, the optimal data segment is the same, an EEG segment containing the data from 30 seconds of eyes-open resting and 30 seconds of CPT task. This produced improved performance for discriminating the differences in EEG between the two groups, thus assisting in the diagnosis of ADHD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM网络的最优脑电数据分割用于ADHD神经动力学学习
注意缺陷/多动障碍(ADHD)是一种普遍影响儿童神经发育的疾病。脑电图(EEG)和连续行为测试(CPT)不仅可以提供ADHD的客观识别,还可以直接观察和量化被试的任务表现。在这项研究中,我们提出了一种优化的分割方法,用于使用长短期记忆(LSTM)网络学习EEG时间序列信息,用于区分ADHD和神经正常(NT)儿童。共有30名NT儿童和30名诊断为ADHD的儿童参加CPT,同时进行脑电图监测。实验结果表明,无论是O2电极位置的单个beta功率特征还是所有特征,最优数据段都是相同的,即包含30秒睁眼休息和30秒CPT任务数据的脑电信号段。这提高了区分两组脑电图差异的性能,从而有助于ADHD的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical Lung Cancer Radiotherapy Model – Computational Simulation and Analysis A Finite-Time Trajectory Tracking Control for a Hexa-rotor with Uncertainty and Actuator Fault A Prediction for the Cluster Centers in Unlabeled Data Optimal EEG Data Segmentation in LSTM Networks for Learning Neural Dynamics of ADHD Genetic Algorithm PID Control of Second-Order Analog Circuit System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1