Map-TreeMaps: A New Approach for Hierarchical and Topological Clustering

Hanene Azzag, M. Lebbah, A. Arfaoui
{"title":"Map-TreeMaps: A New Approach for Hierarchical and Topological Clustering","authors":"Hanene Azzag, M. Lebbah, A. Arfaoui","doi":"10.1109/ICMLA.2010.136","DOIUrl":null,"url":null,"abstract":"We present in this paper a new clustering method which provides self-organization of hierarchical clustering. This method represents large datasets on a forest of original trees which are projected on a simple 2D geometric relationship using tree map representation. The obtained partition is represented by a map of tree maps, which define a tree of data. In this paper, we provide the rules that build a tree of node/data by using distance between data in order to decide where connect nodes. Visual and empirical results based on both synthetic and real datasets from the UCI repository, are given and discussed.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present in this paper a new clustering method which provides self-organization of hierarchical clustering. This method represents large datasets on a forest of original trees which are projected on a simple 2D geometric relationship using tree map representation. The obtained partition is represented by a map of tree maps, which define a tree of data. In this paper, we provide the rules that build a tree of node/data by using distance between data in order to decide where connect nodes. Visual and empirical results based on both synthetic and real datasets from the UCI repository, are given and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Map-TreeMaps:层次和拓扑聚类的新方法
本文提出了一种新的聚类方法,它提供了层次聚类的自组织。该方法表示原始树木森林上的大型数据集,这些数据集使用树图表示法投影在简单的二维几何关系上。获得的分区由树映射的映射表示,树映射定义了数据树。在本文中,我们提供了通过数据之间的距离来构建节点/数据树的规则,以确定节点的连接位置。本文给出并讨论了基于UCI存储库中的合成数据集和真实数据集的视觉和经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1