A New Method for Malware Classification Using Hyperspheres

Nguyen Thi Thu Trang, Nguyen Dai Tho, Kien Hoang Dang
{"title":"A New Method for Malware Classification Using Hyperspheres","authors":"Nguyen Thi Thu Trang, Nguyen Dai Tho, Kien Hoang Dang","doi":"10.1109/SSP53291.2023.10208036","DOIUrl":null,"url":null,"abstract":"The rapid increase in scale and complexity of malware attacks has made traditional signature-based defense approaches less effective due to the inability to detect new forms of malware. Therefore, there is a need for more advanced malware classification methods, which can identify both known and unknown malware efficiently enough, without using signatures. In this paper, we propose a new machine-learning technique for open-world malware classification, using hyperspheres for the succinct representation of different malware families. For each malware sample that needs to be classified, we calculate the probability for it to belong to each hypersphere, then assign the sample to the family having the hypersphere with the highest probability of containing the sample point. Results from experiments have demonstrated the effectiveness of our proposed method on malware datasets for personal computers.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid increase in scale and complexity of malware attacks has made traditional signature-based defense approaches less effective due to the inability to detect new forms of malware. Therefore, there is a need for more advanced malware classification methods, which can identify both known and unknown malware efficiently enough, without using signatures. In this paper, we propose a new machine-learning technique for open-world malware classification, using hyperspheres for the succinct representation of different malware families. For each malware sample that needs to be classified, we calculate the probability for it to belong to each hypersphere, then assign the sample to the family having the hypersphere with the highest probability of containing the sample point. Results from experiments have demonstrated the effectiveness of our proposed method on malware datasets for personal computers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于超球的恶意软件分类新方法
恶意软件攻击的规模和复杂性的快速增长使得传统的基于签名的防御方法由于无法检测到新形式的恶意软件而变得不那么有效。因此,需要更高级的恶意软件分类方法,在不使用签名的情况下,有效地识别已知和未知恶意软件。在本文中,我们提出了一种新的机器学习技术,用于开放世界恶意软件分类,使用超球体来简洁地表示不同的恶意软件家族。对于每个需要分类的恶意软件样本,我们计算其属于每个超球的概率,然后将样本分配给具有包含样本点的概率最高的超球的族。实验结果证明了该方法在个人计算机恶意软件数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1