An information theoretic approach to neural network based system identification

K. Chernyshov
{"title":"An information theoretic approach to neural network based system identification","authors":"K. Chernyshov","doi":"10.1109/SIBCON.2009.5044836","DOIUrl":null,"url":null,"abstract":"The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.","PeriodicalId":164545,"journal":{"name":"2009 International Siberian Conference on Control and Communications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Siberian Conference on Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2009.5044836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的系统辨识的信息理论方法
本文提出了一种基于信息论准则的非线性随机系统输入/输出映射的系统辨识方法。在此基础上,将所研究系统的参数化描述与相应的互信息估计技术(香农意义上的互信息估计技术)相结合,最终导致有限维优化问题。后者的解决是基于将神经网络应用于连续函数优化问题的论文思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of wavelet transformation for detection and recognition of the small size and small contrast subsurface targets Linearization of amplifier using differential transformation Using transient response of tin oxide gas sensor for measuring hydrogen concentration Optimization of the self-aligned GaAs MESFET with the multilayer dielectric “dummy gate“ for a high power microwave applications Leader election in Peer-to-Peer systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1