Effect of Shaking at or Near Resonance of a Simple Head Model on Skull/Brain Connectors

J. Daboin, P. Saboori
{"title":"Effect of Shaking at or Near Resonance of a Simple Head Model on Skull/Brain Connectors","authors":"J. Daboin, P. Saboori","doi":"10.1115/imece2021-69054","DOIUrl":null,"url":null,"abstract":"\n A solid model of a six-month-old child has been developed using average human anatomical characteristics combined with crash test dummy dimensions. The model consisted of a body and limbs, and a neck and head combination with the head being hollow and housing a hemispherical brain. This model was then exposed to a linear sinusoidal input displacement to the chest, and the angular displacement of the skull and brain were observed. The resulting data showed that the oscillatory behavior was a function of frequency, and maximal oscillations existed at a frequency close to the expected natural frequency of the head/neck system, and at a frequency one order of magnitude greater than this frequency. In addition, when a square wave was applied, rather than a sine wave, the resulting oscillation proved to be more violent; and finally, a real input was applied to the model, from previous tests, to discover if a different oscillatory behavior resulted.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A solid model of a six-month-old child has been developed using average human anatomical characteristics combined with crash test dummy dimensions. The model consisted of a body and limbs, and a neck and head combination with the head being hollow and housing a hemispherical brain. This model was then exposed to a linear sinusoidal input displacement to the chest, and the angular displacement of the skull and brain were observed. The resulting data showed that the oscillatory behavior was a function of frequency, and maximal oscillations existed at a frequency close to the expected natural frequency of the head/neck system, and at a frequency one order of magnitude greater than this frequency. In addition, when a square wave was applied, rather than a sine wave, the resulting oscillation proved to be more violent; and finally, a real input was applied to the model, from previous tests, to discover if a different oscillatory behavior resulted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单头部模型共振或近共振振动对颅脑连接的影响
一个实体模型的六个月大的孩子已经开发利用平均人体解剖特征与碰撞测试假人尺寸相结合。该模型由身体和四肢、颈部和头部组成,头部是中空的,内有一个半球形的大脑。然后将该模型暴露在胸部的线性正弦输入位移中,观察颅骨和脑的角位移。结果表明,振荡行为是频率的函数,最大振荡存在于接近头颈系统预期固有频率的频率,并且频率比该频率大一个数量级。此外,当施加方波而不是正弦波时,产生的振荡被证明更猛烈;最后,从之前的测试中,将一个真实的输入应用到模型中,以发现是否会产生不同的振荡行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Evaluation of Heat Transfer in Liver Tumor Microwave Ablation Using a 10-Slot Antenna at High Frequencies Improving the Performance of Ambulatory Gait Training System for Rehabilitation by Mechatronics and Design Simulation Design of a Carbon Fiber Ankle Foot Orthotic With Optimal Joint Stiffness Effect of Shaking at or Near Resonance of a Simple Head Model on Skull/Brain Connectors Do Long Aorta Branches Impact on the Rheological Properties?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1