Application of machine learning algorithm to forecast production for fracture basement formation, Central arch, Bach Ho field

Đăng Tú Trần, Thế Hùng Lê, X. Q. Tran, Huy Hiên Đoàn, Trường Giang Phạm, Đinh Tùng Lưu
{"title":"Application of machine learning algorithm to forecast production for fracture basement formation, Central arch, Bach Ho field","authors":"Đăng Tú Trần, Thế Hùng Lê, X. Q. Tran, Huy Hiên Đoàn, Trường Giang Phạm, Đinh Tùng Lưu","doi":"10.47800/pvj.2022.09-03","DOIUrl":null,"url":null,"abstract":"Oil production forecast is a big challenge in the oil and gas industry. Simulation model and prediction results play an important role in field operation and management. Currently, dynamic simulation model, decline curve analysis are popular tools applied to forecast production. The dynamic simulation model shows a remarkable effect for sedimentary objects. However, production forecasting by this method for fracture basement formation sometimes gives unreliable results because the fracture basement formation is a complex of geological objects, which causes difficulties in predicting the geological characteristics. The decline curve analysis (DCA) method uses simple extrapolated mathematical functions to forecast oil production, therefore the results do not reflect the production operations such as opening/closing production interval.To avoid the disadvantages of these traditional methods, Vietnam Petroleum Institute (VPI) has studied the applicability of machine learning to forecast oil production for fracture basement formation of Bach Ho field. The study results show that the random forest model has improved the production forecast with low relative error (4%).  ","PeriodicalId":294988,"journal":{"name":"Petrovietnam Journal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrovietnam Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47800/pvj.2022.09-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oil production forecast is a big challenge in the oil and gas industry. Simulation model and prediction results play an important role in field operation and management. Currently, dynamic simulation model, decline curve analysis are popular tools applied to forecast production. The dynamic simulation model shows a remarkable effect for sedimentary objects. However, production forecasting by this method for fracture basement formation sometimes gives unreliable results because the fracture basement formation is a complex of geological objects, which causes difficulties in predicting the geological characteristics. The decline curve analysis (DCA) method uses simple extrapolated mathematical functions to forecast oil production, therefore the results do not reflect the production operations such as opening/closing production interval.To avoid the disadvantages of these traditional methods, Vietnam Petroleum Institute (VPI) has studied the applicability of machine learning to forecast oil production for fracture basement formation of Bach Ho field. The study results show that the random forest model has improved the production forecast with low relative error (4%).  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法在Bach Ho油田中央拱裂缝基底地层产量预测中的应用
石油产量预测是油气行业面临的一大挑战。仿真模型和预测结果对现场作业管理具有重要作用。目前,动态模拟模型、递减曲线分析是预测产量的常用工具。动态模拟模型对沉积对象的影响显著。然而,由于裂缝基底是一个复杂的地质对象,用这种方法预测裂缝基底的产量有时会得到不可靠的结果,这给预测地质特征带来了困难。递减曲线分析(DCA)方法采用简单的外推数学函数来预测产量,因此预测结果不能反映开/关生产区间等生产操作。为了避免这些传统方法的缺点,越南石油研究所(VPI)研究了机器学习在Bach Ho油田裂缝基底地层产油量预测中的适用性。研究结果表明,随机森林模型提高了产量预测,相对误差较低(4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Xu hướng chuyển dịch năng lượng và các giải pháp ứng phó của Tập đoàn Dầu khí Việt Nam Xu hướng chuyển dịch năng lượng và kinh nghiệm thực hiện xanh hóa của một số nhà máy lọc hóa dầu trên thế giới Nghiên cứu phương pháp tính dấu chân carbon cho một số sản phẩm dầu khí ở Việt Nam Phí dịch vụ môi trường rừng: Từ lý thuyết đến thực tiễn áp dụng tại các nhà máy điện lực dầu khí Các công cụ chính sách hỗ trợ và tạo đòn bẩy để phát triển ngành điện gió Việt Nam từ kinh nghiệm của một số nước trên thế giới
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1