{"title":"Contact physics of gold microcontacts for MEMS switches","authors":"D. Hyman, M. Mehregany","doi":"10.1109/6144.796533","DOIUrl":null,"url":null,"abstract":"This work presents a tribological study of gold metallic contacts regarding contact resistance, heat dissipation, and surface damage in the normal-force regime of tens to hundreds of /spl mu/N, which is typical of the contact forces from microactuation. The purpose of this work is to present the micromechanical switch designer with practical information on gold contact phenomena in this force regime, as most work in micrometallic contacts has focused on contact forces greater than 1 mN. Results indicate actuation forces of several hundred /spl mu/N are required for reliable fully-metallic contacts, with resistance and current carrying ability primarily dependent on morphology, thermal management, and nm-depth material properties of the contact electrodes.","PeriodicalId":371014,"journal":{"name":"Electrical Contacts - 1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No.98CB36238)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"290","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Contacts - 1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No.98CB36238)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6144.796533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 290
Abstract
This work presents a tribological study of gold metallic contacts regarding contact resistance, heat dissipation, and surface damage in the normal-force regime of tens to hundreds of /spl mu/N, which is typical of the contact forces from microactuation. The purpose of this work is to present the micromechanical switch designer with practical information on gold contact phenomena in this force regime, as most work in micrometallic contacts has focused on contact forces greater than 1 mN. Results indicate actuation forces of several hundred /spl mu/N are required for reliable fully-metallic contacts, with resistance and current carrying ability primarily dependent on morphology, thermal management, and nm-depth material properties of the contact electrodes.