Acoustic impedance inversion base on dual learning

Zixu Wang, Shoudong Wang, Chen Zhou, Zhiyong Wang
{"title":"Acoustic impedance inversion base on dual learning","authors":"Zixu Wang, Shoudong Wang, Chen Zhou, Zhiyong Wang","doi":"10.1109/ICCEA53728.2021.00080","DOIUrl":null,"url":null,"abstract":"Acoustic impedance inversion is an effective way to predict oil and gas reservoirs, but the acoustic impedance inversion based on traditional convolution neural network is limited by the number of labeled data. In order to solve this problem of insufficient labeled data in acoustic impedance inversion, we proposed an acoustic impedance inversion method base on dual learning. This method can be used for impedance inversion under the constraint of the small number of labeled data, and can obtain accurate inversion results.","PeriodicalId":325790,"journal":{"name":"2021 International Conference on Computer Engineering and Application (ICCEA)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Application (ICCEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEA53728.2021.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic impedance inversion is an effective way to predict oil and gas reservoirs, but the acoustic impedance inversion based on traditional convolution neural network is limited by the number of labeled data. In order to solve this problem of insufficient labeled data in acoustic impedance inversion, we proposed an acoustic impedance inversion method base on dual learning. This method can be used for impedance inversion under the constraint of the small number of labeled data, and can obtain accurate inversion results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双重学习的声阻抗反演
声阻抗反演是预测油气藏的一种有效方法,但基于传统卷积神经网络的声阻抗反演受标记数据数量的限制。为了解决声阻抗反演中标记数据不足的问题,提出了一种基于对偶学习的声阻抗反演方法。该方法可用于标注数据较少约束下的阻抗反演,并能获得准确的反演结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Few-shot Image Classification based on LMRNet Design and Test on Acoustic Device for Actively Measuring Underwater Short Distance with High-Precision KVM PT Based Coverage Feedback Fuzzing for Network Key Devices Acoustic impedance inversion base on dual learning Numerical simulation of aerodynamic force and moored state in airship transport process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1