Doubly Extended Fuzzy TOPSIS Method for Group Decision Making

D. Kacprzak
{"title":"Doubly Extended Fuzzy TOPSIS Method for Group Decision Making","authors":"D. Kacprzak","doi":"10.5604/01.3001.0013.8363","DOIUrl":null,"url":null,"abstract":"Multiple Criteria Decision Making methods, such as TOPSIS, have become very popular in recent years and are frequently applied to solve many real-life situations. However, the increasing complexity of the decision problems analysed makes it less feasible to consider all the relevant aspects of the problems by a single decision maker. As a result, many real-life problems are discussed by a group of decision makers. In such a group each decision maker can specialize in a different field and has his/her own unique characteristics, such as knowledge, skills, experience, personality, etc. This implies that each decision maker should have a different degree of influence on the final decision, i.e., the weights of decision makers should be different. The aim of this paper is to extend the fuzzy TOPSIS method to group decision making. The proposed approach uses TOPSIS twice. The first time it is used to determine the weights of decision makers which are then used to calculate the aggregated decision matrix for all the group decision matrices provided by the decision makers. Based on this aggregated matrix, the extended TOPSIS is used again, to rank the alternatives and to select the best one. A numerical example illustrates the proposed approach.\n\n","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0013.8363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multiple Criteria Decision Making methods, such as TOPSIS, have become very popular in recent years and are frequently applied to solve many real-life situations. However, the increasing complexity of the decision problems analysed makes it less feasible to consider all the relevant aspects of the problems by a single decision maker. As a result, many real-life problems are discussed by a group of decision makers. In such a group each decision maker can specialize in a different field and has his/her own unique characteristics, such as knowledge, skills, experience, personality, etc. This implies that each decision maker should have a different degree of influence on the final decision, i.e., the weights of decision makers should be different. The aim of this paper is to extend the fuzzy TOPSIS method to group decision making. The proposed approach uses TOPSIS twice. The first time it is used to determine the weights of decision makers which are then used to calculate the aggregated decision matrix for all the group decision matrices provided by the decision makers. Based on this aggregated matrix, the extended TOPSIS is used again, to rank the alternatives and to select the best one. A numerical example illustrates the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群决策的双重扩展模糊TOPSIS方法
多标准决策方法,如TOPSIS,近年来变得非常流行,并经常用于解决许多现实生活中的情况。然而,所分析的决策问题日益复杂,使单个决策者考虑问题的所有相关方面变得不太可行。因此,许多现实生活中的问题是由一群决策者讨论的。在这样一个群体中,每个决策者都可以专注于不同的领域,并有自己独特的特征,如知识、技能、经验、个性等。这意味着每个决策者对最终决策的影响程度应该是不同的,即决策者的权重应该是不同的。本文的目的是将模糊TOPSIS方法推广到群体决策中。该方法使用了TOPSIS两次。首先用它来确定决策者的权重,然后用它来计算决策者提供的所有群体决策矩阵的聚合决策矩阵。在此聚合矩阵的基础上,再次使用扩展TOPSIS对备选方案进行排序并选择最佳方案。数值算例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a priori positive information on the results of voting methods Comparison of the accuracy of forecasts bsed on neural networks before and after the outbreak of the COVID-19 pandemic on the example of selected exchange rates Estimation of Yu and Meyer bivariate stochastic volatility model by iterated filtering Sample size in clinical trials – challenges and approaches Alternative investments during turbulent times comparison of dynamic relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1