Intelligent mobile robot navigation using a neuro-fuzzy approach

S. Brahimi, O. Azouaoui, M. Loudini
{"title":"Intelligent mobile robot navigation using a neuro-fuzzy approach","authors":"S. Brahimi, O. Azouaoui, M. Loudini","doi":"10.1504/IJCAET.2019.10022397","DOIUrl":null,"url":null,"abstract":"This paper introduces an intelligent navigation system allowing a car-like robot to attain its destination autonomously, intelligently and safely. Based on a neuro-fuzzy (FNN) approach, the applied technique permits the robot to avoid all encountered obstacles and seek for its target's location in a local manner referring to the concepts of learning and adaptation. It uses two fuzzy Artmap neural networks, a reinforcement trial and error neural network and a Mamdani fuzzy logic controller (FLC). Experimental results in the Generator of modules (GenoM) robotics architecture, in an unknown environment, shows the FNN effectiveness for the autonomous mobile robot Robucar.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2019.10022397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces an intelligent navigation system allowing a car-like robot to attain its destination autonomously, intelligently and safely. Based on a neuro-fuzzy (FNN) approach, the applied technique permits the robot to avoid all encountered obstacles and seek for its target's location in a local manner referring to the concepts of learning and adaptation. It uses two fuzzy Artmap neural networks, a reinforcement trial and error neural network and a Mamdani fuzzy logic controller (FLC). Experimental results in the Generator of modules (GenoM) robotics architecture, in an unknown environment, shows the FNN effectiveness for the autonomous mobile robot Robucar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经模糊方法的智能移动机器人导航
本文介绍了一种智能导航系统,使类车机器人能够自主、智能、安全地到达目的地。该技术基于神经模糊(FNN)方法,使机器人能够避开所有遇到的障碍物,并根据学习和适应的概念以局部方式寻找目标的位置。它采用两个模糊Artmap神经网络、一个强化试错神经网络和一个Mamdani模糊逻辑控制器(FLC)。在未知环境下,基于模块生成器(GenoM)机器人体系结构的实验结果表明,FNN对自主移动机器人Robucar的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on the machinability behaviour of Al6061-ZnO(p) metal matrix composite through wire-cut electro discharge machining using multi objective optimisation on the basis of ratio analysis Parameter optimisation of a fibre reinforced polymer composite by RSM design matrix A close scrutiny of dApps and developing an e-voting dApp using Ethereum Blockchain The impact of work integrated learning towards students' learning: the case of ICT students in South African universities of technology A novel study and research on multilayer AlAs/GaAs quantum dot inner layer for solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1