Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts

Helmut Schmid
{"title":"Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts","authors":"Helmut Schmid","doi":"10.1145/3322905.3322915","DOIUrl":null,"url":null,"abstract":"Part-of-speech tagging, morphological tagging, and lemmatization of historical texts pose special challenges due to the high spelling variability and the lack of large, high-quality training corpora. Researchers therefore often first map the words to their modern spelling and then annotate with tools trained on modern corpora. We show in this paper that high quality part-of-speech tagging and lemmatization of historical texts is possible while operating directly on the historical spelling. We use a part-of-speech tagger based on bidirectional long short-term memory networks (LSTMs) [11] with character-based word representations and lemmatize using an encoder-decoder system with attention. We achieve state-of-the-art results for modern German morphological tagging on the Tiger corpus and also on two historical corpora which have been used in previous work.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Part-of-speech tagging, morphological tagging, and lemmatization of historical texts pose special challenges due to the high spelling variability and the lack of large, high-quality training corpora. Researchers therefore often first map the words to their modern spelling and then annotate with tools trained on modern corpora. We show in this paper that high quality part-of-speech tagging and lemmatization of historical texts is possible while operating directly on the historical spelling. We use a part-of-speech tagger based on bidirectional long short-term memory networks (LSTMs) [11] with character-based word representations and lemmatize using an encoder-decoder system with attention. We achieve state-of-the-art results for modern German morphological tagging on the Tiger corpus and also on two historical corpora which have been used in previous work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的历史文本注释形态学标注器和词法分析器
词性标注、形态标注和历史文本的词序化由于拼写的高度可变性和缺乏大型、高质量的训练语料库而面临着特殊的挑战。因此,研究人员通常首先将单词映射为现代拼写,然后使用经过现代语料库训练的工具进行注释。我们在本文中表明,在直接操作历史拼写的同时,高质量的词性标注和历史文本的词序化是可能的。我们使用基于双向长短期记忆网络(LSTMs)[11]的词性标注器和基于字符的单词表示,并使用具有注意的编码器-解码器系统进行词性标注。我们在Tiger语料库和两个历史语料库上取得了最先进的现代德语形态标记结果,这些语料库已在以前的工作中使用过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Articles in a Digitized Finnish Historical Newspaper Collection 1771-1929: Early Results Using the PIVAJ Software OCR for Greek polytonic (multi accent) historical printed documents: development, optimization and quality control Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts Validating 126 million MARC records Automatic Semantic Text Tagging on Historical Lexica by Combining OCR and Typography Classification: A Case Study on Daniel Sander's Wörterbuch der Deutschen Sprache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1