Target localization using proximity binary sensors

Qiang Le, Lance M. Kaplan
{"title":"Target localization using proximity binary sensors","authors":"Qiang Le, Lance M. Kaplan","doi":"10.1109/AERO.2010.5446675","DOIUrl":null,"url":null,"abstract":"This works presents the maximum likelihood localization (ML) algorithm for multi-target localization using proximity-based sensor networks. Proximity sensors simply report a single binary value indicating whether or not a target is near. The ML approach requires a hill climbing algorithm to find the peak, and its ability to find the global peak is determined by the initial estimates for the target locations. This paper investigates three methods to initialize the ML algorithm: 1) centroid of k-means clustering, 2) centroid of clique clustering, and 3) peak in the 1-target likelihood surface. To provide a performance bound for the initialization methods, the paper also considers the ground truth target positions as initial estimates. Simulations compare the ability of these methods to resolve and localize two targets. The simulations demonstrate that the clique clustering technique out-performs k-means clustering and is nearly as effective as the 1-target likelihood peak methods at a fraction of the computational cost.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This works presents the maximum likelihood localization (ML) algorithm for multi-target localization using proximity-based sensor networks. Proximity sensors simply report a single binary value indicating whether or not a target is near. The ML approach requires a hill climbing algorithm to find the peak, and its ability to find the global peak is determined by the initial estimates for the target locations. This paper investigates three methods to initialize the ML algorithm: 1) centroid of k-means clustering, 2) centroid of clique clustering, and 3) peak in the 1-target likelihood surface. To provide a performance bound for the initialization methods, the paper also considers the ground truth target positions as initial estimates. Simulations compare the ability of these methods to resolve and localize two targets. The simulations demonstrate that the clique clustering technique out-performs k-means clustering and is nearly as effective as the 1-target likelihood peak methods at a fraction of the computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用接近二值传感器进行目标定位
本文提出了基于接近度的传感器网络多目标定位的最大似然定位(ML)算法。接近传感器简单地报告一个单一的二进制值,表明目标是否在附近。ML方法需要爬山算法来寻找峰值,其找到全局峰值的能力取决于目标位置的初始估计。本文研究了三种初始化ML算法的方法:1)k-均值聚类质心,2)团聚类质心,3)1-目标似然面峰值。为了给初始化方法提供性能约束,本文还考虑了地面真值目标位置作为初始估计。仿真比较了这些方法对两个目标的分辨和定位能力。仿真表明,团聚类技术优于k均值聚类,并且在计算成本的一小部分上几乎与1目标似然峰方法一样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology challenges for the Square Kilometer Array Pathways and challenges to innovation in aerospace Mentoring: A key to longevity in Space On choosing quaternion equilibrium point in attitude stabilization Preciseness for predictability with the RealSpec real-time executable specification language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1