3GPP New Radio Precoding in NGSO Satellites: Channel Prediction and Dynamic Resource Allocation

T. Vu, Sovit Bhandari, M. Minardi, Van-Dinh Nguyen, S. Chatzinotas
{"title":"3GPP New Radio Precoding in NGSO Satellites: Channel Prediction and Dynamic Resource Allocation","authors":"T. Vu, Sovit Bhandari, M. Minardi, Van-Dinh Nguyen, S. Chatzinotas","doi":"10.1109/SSP53291.2023.10208031","DOIUrl":null,"url":null,"abstract":"The advanced payload technology has opened up a new way to design future NGSO satellite systems exploiting the full flexibility in radio resource and beam coverage management. Conventional spatial multiplexing techniques, which require the CSI, however, cannot be efficiently applied in NGSO due to long round-trip time(RTT). In this paper, we tackle the long RTT in the precoding design by proposing a joint channel prediction and dynamic radio resource management framework. Our aim is to optimize the bandwidth and transmit power in every spot beam based on the predicted channel gains to maximize the system capacity. Since the satellite’s orbit is time-varying but predictable, Kalman filter-based channel estimation method is employed. Given the predicted channels, a joint bandwidth allocation and precoding design is formulated. The effectiveness of the proposed framework is demonstrated via practical satellite channel models using the STK software and 3GPP codebook- and non-codebook-based precoding designs.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advanced payload technology has opened up a new way to design future NGSO satellite systems exploiting the full flexibility in radio resource and beam coverage management. Conventional spatial multiplexing techniques, which require the CSI, however, cannot be efficiently applied in NGSO due to long round-trip time(RTT). In this paper, we tackle the long RTT in the precoding design by proposing a joint channel prediction and dynamic radio resource management framework. Our aim is to optimize the bandwidth and transmit power in every spot beam based on the predicted channel gains to maximize the system capacity. Since the satellite’s orbit is time-varying but predictable, Kalman filter-based channel estimation method is employed. Given the predicted channels, a joint bandwidth allocation and precoding design is formulated. The effectiveness of the proposed framework is demonstrated via practical satellite channel models using the STK software and 3GPP codebook- and non-codebook-based precoding designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NGSO卫星3GPP新无线电预编码:信道预测与动态资源分配
先进的有效载荷技术为设计未来NGSO卫星系统开辟了一条新途径,利用无线电资源和波束覆盖管理的充分灵活性。然而,传统的空间复用技术由于存在较长的往返时间(RTT)而无法有效地应用于NGSO。在本文中,我们通过提出一个联合信道预测和动态无线电资源管理框架来解决预编码设计中的长RTT问题。我们的目标是在预测信道增益的基础上优化每个点波束的带宽和发射功率,使系统容量最大化。由于卫星轨道时变但可预测,采用了基于卡尔曼滤波的信道估计方法。根据预测信道,提出了一种联合带宽分配和预编码设计方案。利用STK软件和3GPP基于码本和非码本的预编码设计,通过实际卫星信道模型证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1