Automated detection of plasmodium falciparum from Giemsa-stained thin blood films

Wongsakorn Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong
{"title":"Automated detection of plasmodium falciparum from Giemsa-stained thin blood films","authors":"Wongsakorn Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong","doi":"10.1109/KST.2016.7440501","DOIUrl":null,"url":null,"abstract":"This paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吉氏染色血膜恶性疟原虫的自动检测
本文研究了吉姆萨染色血膜图像中疟原虫的自动检测方法。我们的目标是基于自动分割、特征提取和分类方法来确定寄生虫。分割依赖于自适应阈值和分水岭方法。然后计算每个单元的统计特征,并使用SVM二值分类器进行分类。基于留一交叉验证技术对分类的准确性进行了验证。该处理流程应用于共15张giemsa染色血膜图像,灵敏度为92.71%,特异性为97.35%,准确率为97.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Category specific knowledge modulate capacity limitations of visual short-term memory From sensors and data to data mining for e-Health Automated detection of plasmodium falciparum from Giemsa-stained thin blood films Optimizing HBase table scheme for marketing strategy suggestion Hybrid ensembles of decision trees and Bayesian network for class imbalance problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1