{"title":"Cryptographic Primitives","authors":"Andreas Bolfing","doi":"10.1093/oso/9780198862840.003.0003","DOIUrl":null,"url":null,"abstract":"This chapter provides a very detailed introduction to cryptography. It first explains the cryptographic basics and introduces the concept of public-key encryption which is based on one-way and trapdoor functions, considering the three major public-key encryption families like integer factorization, discrete logarithm and elliptic curve schemes. This is followed by an introduction to hash functions which are applied to construct Merkle trees and digital signature schemes. As modern cryptoschemes are commonly based on elliptic curves, the chapter then introduces elliptic curve cryptography which is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). It considers the hardness of the ECDLP and the possible attacks against it, showing how to find suitable domain parameters to construct cryptographically strong elliptic curves. This is followed by the discussion of elliptic curve domain parameters which are recommended by current standards. Finally, it introduces the Elliptic Curve Digital Signature Algorithm (ECDSA), the elliptic curve digital signature scheme.","PeriodicalId":202275,"journal":{"name":"Cryptographic Primitives in Blockchain Technology","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptographic Primitives in Blockchain Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198862840.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter provides a very detailed introduction to cryptography. It first explains the cryptographic basics and introduces the concept of public-key encryption which is based on one-way and trapdoor functions, considering the three major public-key encryption families like integer factorization, discrete logarithm and elliptic curve schemes. This is followed by an introduction to hash functions which are applied to construct Merkle trees and digital signature schemes. As modern cryptoschemes are commonly based on elliptic curves, the chapter then introduces elliptic curve cryptography which is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). It considers the hardness of the ECDLP and the possible attacks against it, showing how to find suitable domain parameters to construct cryptographically strong elliptic curves. This is followed by the discussion of elliptic curve domain parameters which are recommended by current standards. Finally, it introduces the Elliptic Curve Digital Signature Algorithm (ECDSA), the elliptic curve digital signature scheme.