Ethan M. Walker, R. Gilbertson, E. Simakov, G. Pilania, R. Muenchausen
{"title":"High-Dielectric 3-D Printable Materials for Laser Accelerators","authors":"Ethan M. Walker, R. Gilbertson, E. Simakov, G. Pilania, R. Muenchausen","doi":"10.1109/AAC.2018.8659400","DOIUrl":null,"url":null,"abstract":"“Logpile” photonic band gap structures are an attractive option for the construction of laser dielectric accelerators. In principle, these structures can be fabricated using a commercial Nanoscribe 3-D printer, although currently available resins do not meet the materials requirements necessary for a functional dielectric waveguide for laser accelerators. In particular, the requisite optical-frequency dielectric constant is well outside the range of conventional organic materials. This work examines material options for overcoming this barrier, while simultaneously meeting requirements for loss tangent, laser-induced breakdown, and compatibility with two-photon polymerization. We present computational screening of more exotic organics resins, and synthetic options for promising candidates. In addition, we discuss materials approaches involving metal-polymer complexes, as well as germanium and metal-chalcogenide polymer nanocomposites. Prospects, inherent limitations, and initial characterization of these various materials will be discussed in the context of 3D-printed dielectric accelerators.","PeriodicalId":339772,"journal":{"name":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AAC.2018.8659400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
“Logpile” photonic band gap structures are an attractive option for the construction of laser dielectric accelerators. In principle, these structures can be fabricated using a commercial Nanoscribe 3-D printer, although currently available resins do not meet the materials requirements necessary for a functional dielectric waveguide for laser accelerators. In particular, the requisite optical-frequency dielectric constant is well outside the range of conventional organic materials. This work examines material options for overcoming this barrier, while simultaneously meeting requirements for loss tangent, laser-induced breakdown, and compatibility with two-photon polymerization. We present computational screening of more exotic organics resins, and synthetic options for promising candidates. In addition, we discuss materials approaches involving metal-polymer complexes, as well as germanium and metal-chalcogenide polymer nanocomposites. Prospects, inherent limitations, and initial characterization of these various materials will be discussed in the context of 3D-printed dielectric accelerators.