GA optimisation of rule base in a fuzzy logic control of a solar power plant

P. Luk, L. Lai, T. L. Tong
{"title":"GA optimisation of rule base in a fuzzy logic control of a solar power plant","authors":"P. Luk, L. Lai, T. L. Tong","doi":"10.1109/DRPT.2000.855667","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA) is formulated to optimise the rule base of a fuzzy logic controller (FLC) in a solar power plant. The rule base embodies an empirical set of 49 'if-then' rules. The influence of each rule is scaled by a weighting factor which is encoded in the gene of a chromosome. The entire chromosome encodes all of the 49 weighting factors. Evaluation of the fitness of the chromosome is based on the response time of the plant. Considerably improvement of plant performance is shown after some 80 generations of evolution of the chromosome.","PeriodicalId":127287,"journal":{"name":"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRPT.2000.855667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A genetic algorithm (GA) is formulated to optimise the rule base of a fuzzy logic controller (FLC) in a solar power plant. The rule base embodies an empirical set of 49 'if-then' rules. The influence of each rule is scaled by a weighting factor which is encoded in the gene of a chromosome. The entire chromosome encodes all of the 49 weighting factors. Evaluation of the fitness of the chromosome is based on the response time of the plant. Considerably improvement of plant performance is shown after some 80 generations of evolution of the chromosome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能发电厂模糊逻辑控制规则库的遗传算法优化
为优化太阳能电站模糊控制器的规则库,提出了一种遗传算法。规则库包含49条“如果-那么”规则的经验集。每条规则的影响都是通过一个加权因子来衡量的,这个加权因子编码在染色体的基因中。整个染色体编码所有49个加权因子。染色体适合度的评估是基于植物的响应时间。经过大约80代染色体的进化,植物的生产性能有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degeneracy and duality gap on optimization-based electricity auctions Evaluation of the Romanian electricity industry restructuring process in comparison with the experience in the United Kingdom The use of tangent vectors for voltage collapse analysis Study of interrelations between electric power systems and large consumers in Russia Short-term investment scheduling in transmission power systems by evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1