Agnostically Learning under Permutation Invariant Distributions

K. Wimmer
{"title":"Agnostically Learning under Permutation Invariant Distributions","authors":"K. Wimmer","doi":"10.1109/FOCS.2010.17","DOIUrl":null,"url":null,"abstract":"We generalize algorithms from computational learning theory that are successful under the uniform distribution on the Boolean hypercube $\\{0,1\\}^n$ to algorithms successful on permutation invariant distributions. A permutation invariant distribution is a distribution where the probability mass remains constant upon permutations in the instances. While the tools in our generalization mimic those used for the Boolean hypercube, the fact that permutation invariant distributions are not product distributions presents a significant obstacle. Under the uniform distribution, half spaces can be agnostically learned in polynomial time for constant $\\eps$. The main tools used are a theorem of Peres~\\cite{Peres04} bounding the {\\it noise sensitivity} of a half space, a result of~\\cite{KOS04} that this theorem implies Fourier concentration, and a modification of the Low-Degree algorithm of Linial, Man sour, Nisan~\\cite{LMN:93} made by Kalai et. al.~\\cite{KKMS08}. These results are extended to arbitrary product distributions in~\\cite{BOWi08}. We prove analogous results for permutation invariant distributions, more generally, we work in the domain of the symmetric group. We define noise sensitivity in this setting, and show that noise sensitivity has a nice combinatorial interpretation in terms of Young tableaux. The main technical innovations involve techniques from the representation theory of the symmetric group, especially the combinatorics of Young tableaux. We show that low noise sensitivity implies concentration on “simple'' components of the Fourier spectrum, and that this fact will allow us to agnostically learn half spaces under permutation invariant distributions to constant accuracy in roughly the same time as in the uniform distribution over the Boolean hypercube case.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We generalize algorithms from computational learning theory that are successful under the uniform distribution on the Boolean hypercube $\{0,1\}^n$ to algorithms successful on permutation invariant distributions. A permutation invariant distribution is a distribution where the probability mass remains constant upon permutations in the instances. While the tools in our generalization mimic those used for the Boolean hypercube, the fact that permutation invariant distributions are not product distributions presents a significant obstacle. Under the uniform distribution, half spaces can be agnostically learned in polynomial time for constant $\eps$. The main tools used are a theorem of Peres~\cite{Peres04} bounding the {\it noise sensitivity} of a half space, a result of~\cite{KOS04} that this theorem implies Fourier concentration, and a modification of the Low-Degree algorithm of Linial, Man sour, Nisan~\cite{LMN:93} made by Kalai et. al.~\cite{KKMS08}. These results are extended to arbitrary product distributions in~\cite{BOWi08}. We prove analogous results for permutation invariant distributions, more generally, we work in the domain of the symmetric group. We define noise sensitivity in this setting, and show that noise sensitivity has a nice combinatorial interpretation in terms of Young tableaux. The main technical innovations involve techniques from the representation theory of the symmetric group, especially the combinatorics of Young tableaux. We show that low noise sensitivity implies concentration on “simple'' components of the Fourier spectrum, and that this fact will allow us to agnostically learn half spaces under permutation invariant distributions to constant accuracy in roughly the same time as in the uniform distribution over the Boolean hypercube case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
排列不变分布下的不可知论学习
我们将计算学习理论中在布尔超立方$\{0,1\}^n$均匀分布下成功的算法推广到在置换不变分布下成功的算法。排列不变分布是指实例中发生排列后概率质量保持不变的分布。虽然我们泛化中的工具模拟了用于布尔超立方体的工具,但排列不变分布不是乘积分布这一事实构成了一个重大障碍。在均匀分布下,对于常数$\eps$,半空间可以在多项式时间内进行不可知论学习。使用的主要工具是Peres的一个定理\cite{Peres04}限定了半空间的{\it噪声灵敏度},\cite{KOS04}的结果表明该定理意味着傅里叶浓度,以及Kalai等人\cite{KKMS08}对Linial, Man sour, Nisan \cite{LMN:93}的Low-Degree算法的修改。这些结果推广到\cite{BOWi08}中的任意乘积分布。我们证明了置换不变分布的类似结果,更一般地说,我们是在对称群的定义域上工作的。在这种情况下,我们定义了噪声敏感性,并表明噪声敏感性在杨氏场景中有一个很好的组合解释。主要的技术创新涉及对称群的表示理论,特别是杨格表的组合学。我们表明,低噪声灵敏度意味着集中在傅立叶谱的“简单”分量上,这一事实将使我们能够在排列不变分布下以恒定精度不可知论地学习半空间,其时间与布尔超立方体情况下的均匀分布大致相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Computational Complexity of Coin Flipping The Monotone Complexity of k-clique on Random Graphs Local List Decoding with a Constant Number of Queries Agnostically Learning under Permutation Invariant Distributions Pseudorandom Generators for Regular Branching Programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1