Learn to Tune: Robust Performance Tuning in Post-Silicon Validation

P. Domanski, D. Pflüger, Raphael Latty
{"title":"Learn to Tune: Robust Performance Tuning in Post-Silicon Validation","authors":"P. Domanski, D. Pflüger, Raphael Latty","doi":"10.1109/ETS56758.2023.10174123","DOIUrl":null,"url":null,"abstract":"Post-silicon validation is a crucial yet challenging problem primarily due to the increasing complexity of the semi-conductor value chain. Existing techniques cannot keep up with the rapid increase in the complexity of designs. Therefore, post-silicon validation is becoming an expensive bottleneck. Robust performance tuning is relevant to compensate impacts of process variations and non-ideal design implementations. We propose a novel approach based on Deep Reinforcement Learning and Learn to Optimize. The method automatically learns flexible tuning strategies tailored to specific circuits. Additionally, it addresses high-dimensional tuning tasks, including mixed data types and dependencies, e.g., on operating conditions. In this work, we introduce Learn to Tune and demonstrate its appealing properties in post-silicon validation, e.g., lower computational cost or faster time-to-optimize, allowing a more efficient adaption of the tuning to changing tuning conditions than classical methods.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-silicon validation is a crucial yet challenging problem primarily due to the increasing complexity of the semi-conductor value chain. Existing techniques cannot keep up with the rapid increase in the complexity of designs. Therefore, post-silicon validation is becoming an expensive bottleneck. Robust performance tuning is relevant to compensate impacts of process variations and non-ideal design implementations. We propose a novel approach based on Deep Reinforcement Learning and Learn to Optimize. The method automatically learns flexible tuning strategies tailored to specific circuits. Additionally, it addresses high-dimensional tuning tasks, including mixed data types and dependencies, e.g., on operating conditions. In this work, we introduce Learn to Tune and demonstrate its appealing properties in post-silicon validation, e.g., lower computational cost or faster time-to-optimize, allowing a more efficient adaption of the tuning to changing tuning conditions than classical methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学会调优:后硅验证中的稳健性能调优
后硅验证是一个关键但具有挑战性的问题,主要是由于半导体价值链日益复杂。现有的技术无法跟上设计复杂性的快速增长。因此,后硅验证正在成为一个昂贵的瓶颈。鲁棒性能调优与补偿过程变化和非理想设计实现的影响有关。我们提出了一种基于深度强化学习和学习优化的新方法。该方法自动学习针对特定电路的灵活调谐策略。此外,它还处理高维调优任务,包括混合数据类型和依赖项,例如,在操作条件上。在这项工作中,我们介绍了Learn to Tune并展示了其在后硅验证中吸引人的特性,例如,更低的计算成本或更快的优化时间,允许比经典方法更有效地适应不断变化的调谐条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1