Chunyu Hu, Hwangnam Kim, J. Hou, Dennis Chi, S. Nandagopalan
{"title":"Provisioning Quality Controlled Medium Access in UltraWideBand-Operated WPANs","authors":"Chunyu Hu, Hwangnam Kim, J. Hou, Dennis Chi, S. Nandagopalan","doi":"10.1109/INFOCOM.2006.151","DOIUrl":null,"url":null,"abstract":"Quality of service (QoS) provisioning is one of the most important criteria in newly emerging UWB-operated WPANs, as they are expected to support a wide variety of applica- tions from time-constrained, multimedia streaming to throughput- hungry, content transfer applications. As such, the Enhanced Distributed Coordinated Access (EDCA) mechanism has been adopted by MultiBand OFDM Alliance in its UWB MAC proposal. In this paper, we conduct a rigorous, comprehensive, theoretical analysis and show that with the currently recommended parame- ter setting, EDCA cannot provide adequate QoS. In particular, without responding to the system dynamics (e.g., taking into account of the number of active class-i stations), EDCA cannot allocate bandwidth in a deterministic proportional manner and the system bandwidth is under-utilized. After identifying the deficiency of EDCA, we propose, in compliance with the EDCA-incorporated UWB MAC protocol proposed in (15) (20), a framework, along with a set of theoretically grounded methods for controlling medium access with determin- istic QoS for UWB networks. We show that in this framework, 1) real-time traffic is guaranteed of deterministic bandwidth via a contention-based reservation access method; 2) best-effort traffic is provided with deterministic proportional QoS; and moreover, 3) the bandwidth utilization is maximized. We have also validated and evaluated the QoS provisioning capability and practicality of the proposed MAC framework both via simulation and empirically by leveraging the MADWifi (Multiband Atheros Driver for WiFi) Linux driver for Wireless LAN devices with the Atheros chipset.","PeriodicalId":163725,"journal":{"name":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2006.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Quality of service (QoS) provisioning is one of the most important criteria in newly emerging UWB-operated WPANs, as they are expected to support a wide variety of applica- tions from time-constrained, multimedia streaming to throughput- hungry, content transfer applications. As such, the Enhanced Distributed Coordinated Access (EDCA) mechanism has been adopted by MultiBand OFDM Alliance in its UWB MAC proposal. In this paper, we conduct a rigorous, comprehensive, theoretical analysis and show that with the currently recommended parame- ter setting, EDCA cannot provide adequate QoS. In particular, without responding to the system dynamics (e.g., taking into account of the number of active class-i stations), EDCA cannot allocate bandwidth in a deterministic proportional manner and the system bandwidth is under-utilized. After identifying the deficiency of EDCA, we propose, in compliance with the EDCA-incorporated UWB MAC protocol proposed in (15) (20), a framework, along with a set of theoretically grounded methods for controlling medium access with determin- istic QoS for UWB networks. We show that in this framework, 1) real-time traffic is guaranteed of deterministic bandwidth via a contention-based reservation access method; 2) best-effort traffic is provided with deterministic proportional QoS; and moreover, 3) the bandwidth utilization is maximized. We have also validated and evaluated the QoS provisioning capability and practicality of the proposed MAC framework both via simulation and empirically by leveraging the MADWifi (Multiband Atheros Driver for WiFi) Linux driver for Wireless LAN devices with the Atheros chipset.