Hierarchical perceptron (HiPer) networks for signal/image classifications

S. Kung, J. Taur
{"title":"Hierarchical perceptron (HiPer) networks for signal/image classifications","authors":"S. Kung, J. Taur","doi":"10.1109/NNSP.1992.253686","DOIUrl":null,"url":null,"abstract":"A new class of decision-based neural networks (DBNNs) is introduced. These networks combine the perceptron-like learning rule with a hierarchical nonlinear network structure and are called HiPer nets. Two HiPer net structures are proposed: hidden-node and subcluster structures. The authors explore several variants of HiPer nets based on the different hierarchical structures and basis functions and then examine the relationships between HiPer nets and other DBNNs, e.g., perceptron and LVQ. Based on the simulation performance comparison, the HiPer nets appear to be very effective for many signal/image classification applications, including texture classification, OCR (optical character recognition), and ECG (electrocardiography).<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new class of decision-based neural networks (DBNNs) is introduced. These networks combine the perceptron-like learning rule with a hierarchical nonlinear network structure and are called HiPer nets. Two HiPer net structures are proposed: hidden-node and subcluster structures. The authors explore several variants of HiPer nets based on the different hierarchical structures and basis functions and then examine the relationships between HiPer nets and other DBNNs, e.g., perceptron and LVQ. Based on the simulation performance comparison, the HiPer nets appear to be very effective for many signal/image classification applications, including texture classification, OCR (optical character recognition), and ECG (electrocardiography).<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于信号/图像分类的层次感知器(HiPer)网络
介绍了一类基于决策的神经网络(DBNNs)。这些网络将类似感知器的学习规则与分层非线性网络结构相结合,称为HiPer网络。提出了两种HiPer网络结构:隐节点结构和子簇结构。作者基于不同的层次结构和基函数探索了HiPer网络的几种变体,然后研究了HiPer网络与其他dbnn(例如感知器和LVQ)之间的关系。基于仿真性能比较,HiPer网络似乎对许多信号/图像分类应用非常有效,包括纹理分类、OCR(光学字符识别)和ECG(心电图)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1