Hyperbolic Pattern Detection in Ground Penetrating Radar Images Using Faster R-CNN

Pachara Srimuk, A. Boonpoonga, K. Kaemarungsi, K. Athikulwongse, D. Torrungrueng, Nattawat Chantasen
{"title":"Hyperbolic Pattern Detection in Ground Penetrating Radar Images Using Faster R-CNN","authors":"Pachara Srimuk, A. Boonpoonga, K. Kaemarungsi, K. Athikulwongse, D. Torrungrueng, Nattawat Chantasen","doi":"10.1109/ECTI-CON58255.2023.10153197","DOIUrl":null,"url":null,"abstract":"This study presents the application of Faster RCNN, a popular Region Based Convolutional Neural Network, for detecting hyperbolic patterns in Ground Penetrating Radar (GPR) images. GPR is an important tool for subsurface imaging in various fields such as geology, archaeology, and engineering. However, the analysis of GPR images can be challenging due to noise, small objects, and variations in object sizes. To evaluate the performance of the proposed method, 369 simulated GPR B-scan images were generated using GprMax simulation software. These images included single, double, and triple hyperbolic patterns. The results showed that preprocessing improved the detection accuracy and led to higher Intersection over Union (IoU) scores. The experimental results demonstrate that Faster R-CNN is an effective tool for hyperbolic pattern detection in GPR images and provides a promising direction for future research in the field.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the application of Faster RCNN, a popular Region Based Convolutional Neural Network, for detecting hyperbolic patterns in Ground Penetrating Radar (GPR) images. GPR is an important tool for subsurface imaging in various fields such as geology, archaeology, and engineering. However, the analysis of GPR images can be challenging due to noise, small objects, and variations in object sizes. To evaluate the performance of the proposed method, 369 simulated GPR B-scan images were generated using GprMax simulation software. These images included single, double, and triple hyperbolic patterns. The results showed that preprocessing improved the detection accuracy and led to higher Intersection over Union (IoU) scores. The experimental results demonstrate that Faster R-CNN is an effective tool for hyperbolic pattern detection in GPR images and provides a promising direction for future research in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于更快R-CNN的探地雷达图像双曲模式检测
本文介绍了一种流行的基于区域的卷积神经网络——Faster RCNN在探地雷达(GPR)图像中双曲模式检测中的应用。探地雷达是地质、考古、工程等各个领域进行地下成像的重要工具。然而,由于噪声、小物体和物体大小的变化,GPR图像的分析可能具有挑战性。为了评估该方法的性能,使用GprMax仿真软件生成了369张模拟GPR b扫描图像。这些图像包括单、双、三重双曲线模式。结果表明,预处理提高了检测精度,提高了交叉口比联(Intersection over Union, IoU)分数。实验结果表明,Faster R-CNN是GPR图像中双曲模式检测的有效工具,为该领域的未来研究提供了一个很好的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing and Implementing a Real-Time Mass Health Screening System: MFU.Pass Low-Frequency Wave Propagation in the Cave Developing Steps for Learning Programming through Gamification Hyperbolic Pattern Detection in Ground Penetrating Radar Images Using Faster R-CNN CMA-Based Metasurface-Based Circularly Polarized Patch Antenna for SATCOM Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1