Thermal Error Modeling of a Machining Center using Grey System Theory and HGA-Trained Neural Network

Kun-Chieh Wang
{"title":"Thermal Error Modeling of a Machining Center using Grey System Theory and HGA-Trained Neural Network","authors":"Kun-Chieh Wang","doi":"10.1109/ICCIS.2006.252298","DOIUrl":null,"url":null,"abstract":"The thermal effect on machine tools has become a well-recognized problem in response to the increasing requirement of product quality. The performance of a thermal error compensation system strongly depends on the accuracy of the thermal error model. This paper presents a novel thermal error modeling technique including two mathematic schemes: GM(1,N) model of the grey system theory and the hierarchy-genetic-algorithm (HGA) trained neural network in order to map the temperature ascent against thermal drift of the machine tool. Fist, the GM(1,N) scheme of the grey system theory was applied to minimize the numbers of the temperature sensors on machine. Then, the HGA method is incorporated into the neural network training to optimize its layer numbers and neurons in each layer. These two schemes provide an efficient and accurate thermal error compensation for CNC machine tools. The thermal error compensation technique built in this study can be applied to any type of CNC machine tool because the error model parameters are only calculated mathematically","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The thermal effect on machine tools has become a well-recognized problem in response to the increasing requirement of product quality. The performance of a thermal error compensation system strongly depends on the accuracy of the thermal error model. This paper presents a novel thermal error modeling technique including two mathematic schemes: GM(1,N) model of the grey system theory and the hierarchy-genetic-algorithm (HGA) trained neural network in order to map the temperature ascent against thermal drift of the machine tool. Fist, the GM(1,N) scheme of the grey system theory was applied to minimize the numbers of the temperature sensors on machine. Then, the HGA method is incorporated into the neural network training to optimize its layer numbers and neurons in each layer. These two schemes provide an efficient and accurate thermal error compensation for CNC machine tools. The thermal error compensation technique built in this study can be applied to any type of CNC machine tool because the error model parameters are only calculated mathematically
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰色系统理论和hga训练神经网络的加工中心热误差建模
随着对产品质量要求的不断提高,机床的热效应已成为一个公认的问题。热误差补偿系统的性能在很大程度上取决于热误差模型的准确性。本文提出了一种新的热误差建模技术,包括灰色系统理论的GM(1,N)模型和层次遗传算法训练的神经网络两种数学方案,以映射机床的温度上升和热漂移。首先,应用灰色系统理论中的GM(1,N)格式,实现温度传感器数量的最小化;然后,将HGA方法引入到神经网络训练中,对神经网络的层数和每层神经元进行优化。这两种方案为数控机床提供了高效、准确的热误差补偿。本研究所建立的热误差补偿技术,由于误差模型参数仅用数学方法计算,因此可以应用于任何类型的数控机床
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1