Incremental Spatio-Temporal Graph Learning for Online Query-POI Matching

Zixuan Yuan, Hao Liu, Junming Liu, Yanchi Liu, Yang Yang, Renjun Hu, Hui Xiong
{"title":"Incremental Spatio-Temporal Graph Learning for Online Query-POI Matching","authors":"Zixuan Yuan, Hao Liu, Junming Liu, Yanchi Liu, Yang Yang, Renjun Hu, Hui Xiong","doi":"10.1145/3442381.3449810","DOIUrl":null,"url":null,"abstract":"Query and Point-of-Interest (POI) matching, aiming at recommending the most relevant POIs from partial query keywords, has become one of the most essential functions in online navigation and ride-hailing applications. Existing methods for query-POI matching, such as Google Maps and Uber, have a natural focus on measuring the static semantic similarity between contextual information of queries and geographical information of POIs. However, it remains challenging for dynamic and personalized online query-POI matching because of the non-stationary and situational context-dependent query-POI relevance. Moreover, the large volume of online queries requires an adaptive and incremental model training strategy that is efficient and scalable in the online scenario. To this end, in this paper, we propose an Incremental Spatio-Temporal Graph Learning (IncreSTGL) framework for intelligent online query-POI matching. Specifically, we first model dynamic query-POI interactions as microscopic and macroscopic graphs. Then, we propose an incremental graph representation learning module to refine and update query-POI interaction graphs in an online incremental fashion, which includes: (i) a contextual graph attention operation quantifying query-POI correlation based on historical queries under dynamic situational context, (ii) a graph discrimination operation capturing the sequential query-POI relevance drift from a holistic view of personalized preference and social homophily, and (iii) a multi-level temporal attention operation summarizing the temporal variations of query-POI interaction graphs for subsequent query-POI matching. Finally, we introduce a lightweight semantic matching module for online query-POI similarity measurement. To demonstrate the effectiveness and efficiency of the proposed algorithm, we conduct extensive experiments on two real-world datasets collected from a leading online navigation and map service provider in China.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Query and Point-of-Interest (POI) matching, aiming at recommending the most relevant POIs from partial query keywords, has become one of the most essential functions in online navigation and ride-hailing applications. Existing methods for query-POI matching, such as Google Maps and Uber, have a natural focus on measuring the static semantic similarity between contextual information of queries and geographical information of POIs. However, it remains challenging for dynamic and personalized online query-POI matching because of the non-stationary and situational context-dependent query-POI relevance. Moreover, the large volume of online queries requires an adaptive and incremental model training strategy that is efficient and scalable in the online scenario. To this end, in this paper, we propose an Incremental Spatio-Temporal Graph Learning (IncreSTGL) framework for intelligent online query-POI matching. Specifically, we first model dynamic query-POI interactions as microscopic and macroscopic graphs. Then, we propose an incremental graph representation learning module to refine and update query-POI interaction graphs in an online incremental fashion, which includes: (i) a contextual graph attention operation quantifying query-POI correlation based on historical queries under dynamic situational context, (ii) a graph discrimination operation capturing the sequential query-POI relevance drift from a holistic view of personalized preference and social homophily, and (iii) a multi-level temporal attention operation summarizing the temporal variations of query-POI interaction graphs for subsequent query-POI matching. Finally, we introduce a lightweight semantic matching module for online query-POI similarity measurement. To demonstrate the effectiveness and efficiency of the proposed algorithm, we conduct extensive experiments on two real-world datasets collected from a leading online navigation and map service provider in China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线查询- poi匹配的增量时空图学习
查询与兴趣点匹配(Query and Point-of-Interest, POI)旨在从部分查询关键字中推荐最相关的兴趣点,已成为在线导航和网约车应用中最重要的功能之一。现有的查询- poi匹配方法,如谷歌Maps和Uber,自然侧重于测量查询的上下文信息和poi的地理信息之间的静态语义相似度。然而,由于查询- poi相关性的非平稳和情景上下文依赖,动态和个性化在线查询- poi匹配仍然具有挑战性。此外,大量的在线查询需要一种在在线场景中高效且可扩展的自适应增量模型训练策略。为此,本文提出了一种用于智能在线查询- poi匹配的增量时空图学习(IncreSTGL)框架。具体来说,我们首先将动态查询- poi交互建模为微观和宏观图。然后,我们提出了一个增量图表示学习模块,以在线增量方式精炼和更新查询- poi交互图,其中包括:(i)基于动态情景背景下历史查询量化查询- poi相关性的上下文图注意操作;(ii)从个性化偏好和社会同质性的整体角度捕捉顺序查询- poi相关性漂移的图判别操作;(iii)总结查询- poi交互图的时间变化,为后续查询- poi匹配提供多层次时间注意操作。最后,我们引入了一个轻量级的在线查询语义匹配模块——poi相似度度量。为了证明所提出算法的有效性和效率,我们在中国一家领先的在线导航和地图服务提供商收集的两个真实数据集上进行了广泛的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1