Physical Synthesis for Advanced Neural Network Processors

Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, Bei Yu
{"title":"Physical Synthesis for Advanced Neural Network Processors","authors":"Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, Bei Yu","doi":"10.1145/3394885.3431625","DOIUrl":null,"url":null,"abstract":"The remarkable breakthroughs in deep learning have led to a dramatic thirst for computational resources to tackle interesting real-world problems. Various neural network processors have been proposed for the purpose, yet, far fewer discussions have been made on the physical synthesis for such specialized processors, especially in advanced technology nodes. In this paper, we review several physical synthesis techniques for advanced neural network processors. We especially argue that datapath design is an essential methodology in the above procedures due to the organized computational graph of neural networks. As a case study, we investigate a wafer-scale deep learning accelerator placement problem in detail.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The remarkable breakthroughs in deep learning have led to a dramatic thirst for computational resources to tackle interesting real-world problems. Various neural network processors have been proposed for the purpose, yet, far fewer discussions have been made on the physical synthesis for such specialized processors, especially in advanced technology nodes. In this paper, we review several physical synthesis techniques for advanced neural network processors. We especially argue that datapath design is an essential methodology in the above procedures due to the organized computational graph of neural networks. As a case study, we investigate a wafer-scale deep learning accelerator placement problem in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高级神经网络处理器的物理合成
深度学习的显著突破导致了对计算资源的巨大渴求,以解决有趣的现实问题。各种各样的神经网络处理器已经被提出,然而,对这种专门处理器的物理合成的讨论却很少,特别是在先进的技术节点上。本文综述了先进神经网络处理器的几种物理合成技术。我们特别指出,由于神经网络的组织计算图,数据路径设计是上述过程中必不可少的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Aware NAS Framework with Layer Adaptive Scheduling on Embedded System Value-Aware Error Detection and Correction for SRAM Buffers in Low-Bitwidth, Floating-Point CNN Accelerators A Unified Printed Circuit Board Routing Algorithm With Complicated Constraints and Differential Pairs Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search A DSM-based Polar Transmitter with 23.8% System Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1