Image Quality Assessment using Semi-Supervised Representation Learning

V. Prabhakaran, Gokul Swamy
{"title":"Image Quality Assessment using Semi-Supervised Representation Learning","authors":"V. Prabhakaran, Gokul Swamy","doi":"10.1109/WACVW58289.2023.00060","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for learning feature representations for Image Quality Assessment (IQA) using contrastive learning. To account for the absence of large-scale IQA dataset, we pretrain an image encoder to cluster images based on the image quality using synthetically distorted versions of pristine unlabeled images. Images of similar quality are grouped closer in embedding space, while simultaneously pushing apart images of dissimilar quality. In addition we show that, augmenting the contrastive learning task with downstream aware joint supervision results in feature representations that are more suitable and easily transferable for IQA specific tasks. We study the effectiveness of the learnt representations in downstream task of image quality prediction and show that our model achieves superior performance on both synthetically and authentically distorted IQA datasets when compared to other deep feature-based IQA methods.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a framework for learning feature representations for Image Quality Assessment (IQA) using contrastive learning. To account for the absence of large-scale IQA dataset, we pretrain an image encoder to cluster images based on the image quality using synthetically distorted versions of pristine unlabeled images. Images of similar quality are grouped closer in embedding space, while simultaneously pushing apart images of dissimilar quality. In addition we show that, augmenting the contrastive learning task with downstream aware joint supervision results in feature representations that are more suitable and easily transferable for IQA specific tasks. We study the effectiveness of the learnt representations in downstream task of image quality prediction and show that our model achieves superior performance on both synthetically and authentically distorted IQA datasets when compared to other deep feature-based IQA methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用半监督表示学习的图像质量评估
在本文中,我们提出了一个使用对比学习来学习图像质量评估(IQA)特征表示的框架。为了解释大规模IQA数据集的缺失,我们使用原始未标记图像的合成扭曲版本,根据图像质量预训练图像编码器来聚类图像。相似质量的图像在嵌入空间中被分组得更近,而不同质量的图像则被推离。此外,我们还表明,通过下游感知联合监督来增强对比学习任务,可以获得更适合于IQA特定任务且易于转移的特征表示。我们研究了学习表征在图像质量预测下游任务中的有效性,并表明与其他基于深度特征的IQA方法相比,我们的模型在综合和真实扭曲的IQA数据集上都取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subjective and Objective Video Quality Assessment of High Dynamic Range Sports Content Improving the Detection of Small Oriented Objects in Aerial Images Image Quality Assessment using Semi-Supervised Representation Learning A Principal Component Analysis-Based Approach for Single Morphing Attack Detection Can Machines Learn to Map Creative Videos to Marketing Campaigns?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1