A dedicated bit-serial hardware neuron for massively-parallel neural networks in fast epilepsy diagnosis

Si Mon Kueh, T. Kazmierski
{"title":"A dedicated bit-serial hardware neuron for massively-parallel neural networks in fast epilepsy diagnosis","authors":"Si Mon Kueh, T. Kazmierski","doi":"10.1109/HIC.2017.8227595","DOIUrl":null,"url":null,"abstract":"This paper outlines the feasibility of detecting epilepsy though low-cost and low-energy dedicated hardware with bit-serial processing. The concept of a novel bit-serial data processing unit (DPU) is presented which implements the functionality of a complete neuron. The proposed approach has been tested using various network configurations and compared with related work. The proposed DPU uses only 24 Adaptive Logic Modules on an Altera Cyclone V FPGA. An array of these DPUs are controlled by a simple finite state machine. The proposed DPU allows the construction of complex hardware ANNs that can be implemented in portable equipment that suits the needs of a single epileptic patient in his or her daily activities to detect impending seizure events.","PeriodicalId":120815,"journal":{"name":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2017.8227595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper outlines the feasibility of detecting epilepsy though low-cost and low-energy dedicated hardware with bit-serial processing. The concept of a novel bit-serial data processing unit (DPU) is presented which implements the functionality of a complete neuron. The proposed approach has been tested using various network configurations and compared with related work. The proposed DPU uses only 24 Adaptive Logic Modules on an Altera Cyclone V FPGA. An array of these DPUs are controlled by a simple finite state machine. The proposed DPU allows the construction of complex hardware ANNs that can be implemented in portable equipment that suits the needs of a single epileptic patient in his or her daily activities to detect impending seizure events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模并行神经网络快速癫痫诊断的专用位串行硬件神经元
本文概述了利用低成本、低能耗的专用硬件进行位串行处理检测癫痫的可行性。提出了一种实现完整神经元功能的新型位串行数据处理单元(DPU)的概念。该方法已在不同的网络配置下进行了测试,并与相关工作进行了比较。提出的DPU在Altera Cyclone V FPGA上仅使用24个自适应逻辑模块。这些dpu的数组由一个简单的有限状态机控制。提出的DPU允许构建复杂的硬件人工神经网络,可以在便携式设备中实现,以满足单个癫痫患者在其日常活动中检测即将发生的癫痫事件的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label-free detection of lactoferrin and beta-2-microglobuin in contrived tear film using a low-cost electrical biosensor chip Development of an AI-based non-invasive Pulse AudioGram monitoring device for arrhythmia screening Comparison of sleep parameters assessed by actigraphy of healthy young adults from a small town and a megalopolis in an emerging country A dedicated bit-serial hardware neuron for massively-parallel neural networks in fast epilepsy diagnosis A feasibility study on a low-cost, smartphone-based solution of pulse transit time measurement using cardio-mechanical signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1