Mining Parallel Data from Comparable Corpora via Triangulation

T. Do, E. Castelli, L. Besacier
{"title":"Mining Parallel Data from Comparable Corpora via Triangulation","authors":"T. Do, E. Castelli, L. Besacier","doi":"10.1109/IALP.2011.57","DOIUrl":null,"url":null,"abstract":"This paper improves an unsupervised method for extracting parallel sentence pairs from a comparable corpus by using the triangulation through a third language. Before, an unsupervised method for extracting parallel sentence pairs from a comparable corpus has been proposed. This method is based on technique of cross-language information retrieval with iterative process and requires no more additional parallel data. The method has been validated on the Vietnamese-French and Vietnamese-English bilingual data. In this paper, we address the problem of using triangulation through a third language to improve the parallel data mining processes: English is used in the Vietnamese-French parallel data mining process, and French is used in the Vietnamese-English parallel data mining process. The experiments conducted show that using triangulation can improve the quality of the extracted data and the quality of the translation system as well.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper improves an unsupervised method for extracting parallel sentence pairs from a comparable corpus by using the triangulation through a third language. Before, an unsupervised method for extracting parallel sentence pairs from a comparable corpus has been proposed. This method is based on technique of cross-language information retrieval with iterative process and requires no more additional parallel data. The method has been validated on the Vietnamese-French and Vietnamese-English bilingual data. In this paper, we address the problem of using triangulation through a third language to improve the parallel data mining processes: English is used in the Vietnamese-French parallel data mining process, and French is used in the Vietnamese-English parallel data mining process. The experiments conducted show that using triangulation can improve the quality of the extracted data and the quality of the translation system as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三角剖分法从可比语料库中挖掘并行数据
本文利用第三语言的三角剖分,改进了一种从可比语料库中提取平行句对的无监督方法。在此之前,已经提出了一种从可比语料库中提取平行句对的无监督方法。该方法基于迭代过程的跨语言信息检索技术,不需要额外的并行数据。该方法在越法和越英双语数据上进行了验证。在本文中,我们解决了通过第三语言使用三角测量来改进并行数据挖掘过程的问题:在越南语-法语并行数据挖掘过程中使用英语,在越南语-英语并行数据挖掘过程中使用法语。实验结果表明,使用三角剖分可以提高提取数据的质量和翻译系统的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1