{"title":"Register binding based power management for high-level synthesis of control-flow intensive behaviors","authors":"Lin Zhong, Jiong Luo, Yunsi Fei, N. Jha","doi":"10.1109/ICCD.2002.1106800","DOIUrl":null,"url":null,"abstract":"A circuit or circuit component that does not contain any spurious switching activity, i.e., activity that is not required by its specified functionality, is called perfectly power managed (PPM). We present a general sufficient condition for register binding to ensure that a given set of functional units is PPM. This condition not only applies to data-flow intensive (DFI) behaviors but also to control-flow intensive (CFI) behaviors. It leads to a straightforward power-managed (PM) register binding algorithm. The proposed algorithm is independent of the functional unit binding and scheduling algorithms. Hence, it can be easily incorporated into existing high-level synthesis systems. For the benchmarks we experimented with, an average 45.9% power reduction was achieved by our method at the cost of 7.7% average area overhead, compared to power-optimized register-transfer level (RTL) circuits which did not use PM register binding.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A circuit or circuit component that does not contain any spurious switching activity, i.e., activity that is not required by its specified functionality, is called perfectly power managed (PPM). We present a general sufficient condition for register binding to ensure that a given set of functional units is PPM. This condition not only applies to data-flow intensive (DFI) behaviors but also to control-flow intensive (CFI) behaviors. It leads to a straightforward power-managed (PM) register binding algorithm. The proposed algorithm is independent of the functional unit binding and scheduling algorithms. Hence, it can be easily incorporated into existing high-level synthesis systems. For the benchmarks we experimented with, an average 45.9% power reduction was achieved by our method at the cost of 7.7% average area overhead, compared to power-optimized register-transfer level (RTL) circuits which did not use PM register binding.