Bayes Estimation in the Hierarchical Multinomial Probit Model

Harunori Mori
{"title":"Bayes Estimation in the Hierarchical Multinomial Probit Model","authors":"Harunori Mori","doi":"10.14490/JJSS.44.135","DOIUrl":null,"url":null,"abstract":"We consider a complete hierarchical multinomial probit (HMNP) model in which both the regression-coefficient vector and the covariance matrix are assumed to have hierarchical structure and propose an MCMC algorithm for numerically computing the Bayes estimates of the parameters. We show by simulation studies that the covariance matrix is estimated with higher accuracy using the method proposed in this paper than that using an HMNP model in which the covariance matrix is not assumed to have hierarchical structure.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.44.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a complete hierarchical multinomial probit (HMNP) model in which both the regression-coefficient vector and the covariance matrix are assumed to have hierarchical structure and propose an MCMC algorithm for numerically computing the Bayes estimates of the parameters. We show by simulation studies that the covariance matrix is estimated with higher accuracy using the method proposed in this paper than that using an HMNP model in which the covariance matrix is not assumed to have hierarchical structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层次多项式概率模型中的贝叶斯估计
我们考虑了一个完整的层次多项式概率(HMNP)模型,其中回归系数向量和协方差矩阵都假设具有层次结构,并提出了一种MCMC算法来数值计算参数的贝叶斯估计。我们通过仿真研究表明,与不假设协方差矩阵具有层次结构的HMNP模型相比,本文提出的方法估计协方差矩阵的精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1