A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model

Aki Ishii
{"title":"A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model","authors":"Aki Ishii","doi":"10.14490/JJSS.47.273","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.47.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we discuss two-sample tests for high-dimension, non-Gaussian data. We suppose that two classes have a strongly spiked eigenvalue model. First, we investigate the noise space for high-dimension, non-Gaussian data. A two-sample test is proposed by using the cross-data-matrix (CDM) methodology and its power is derived under some regularity conditions when the dimension is very large. We discuss the validity of assumptions. We check the performance of the proposed two-sample test procedure by simulations. Finally, we demonstrate the proposed two-sample test in actual data analyses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强尖峰特征值模型下非高斯数据的高维二样本检验
本文讨论了高维非高斯数据的双样本检验。我们假设两个类有一个强尖峰特征值模型。首先,我们研究了高维非高斯数据的噪声空间。利用交叉数据矩阵(cross-data-matrix, CDM)方法提出了一种双样本检验方法,并在一定的规则条件下推导了该方法的幂函数。我们讨论假设的有效性。我们通过仿真验证了所提出的双样本测试程序的性能。最后,我们在实际数据分析中验证了所提出的双样本检验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1