Autotuned parallel I/O for highly scalable biosequence analysis

Haihang You, Bhanu Rekapalli, Qing Liu, S. Moore
{"title":"Autotuned parallel I/O for highly scalable biosequence analysis","authors":"Haihang You, Bhanu Rekapalli, Qing Liu, S. Moore","doi":"10.1145/2016741.2016772","DOIUrl":null,"url":null,"abstract":"In recent years, the rate of genomics sequence generation increased dramatically due to significant advances in the sequencing technology. The genomics data is accumulating at an exponential rate in various databases all around the world and rapid analysis techniques will enhance the knowledge discovery in the fields of medicine and biotechnology. Analysis of such growing sequence databases demands tremendous computational power that can only be provided by massively parallel computers. Improving the performance and scalability of bioinformatics tools thus becomes a critical step in the quest to transform ever-growing raw genomics data into biological knowledge. In this paper we describe an efficient parallel implementation of a profile hidden Markov models (profile HMMs) code used for protein domain identification, along with auto-tuned parallel I/O optimization. Experimental results show linear speedup with increasing numbers of computing cores on a supercomputer, allowing the domain identification of millions of proteins in few minutes using hundreds of thousands computing cores.","PeriodicalId":257555,"journal":{"name":"TeraGrid Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TeraGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2016741.2016772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, the rate of genomics sequence generation increased dramatically due to significant advances in the sequencing technology. The genomics data is accumulating at an exponential rate in various databases all around the world and rapid analysis techniques will enhance the knowledge discovery in the fields of medicine and biotechnology. Analysis of such growing sequence databases demands tremendous computational power that can only be provided by massively parallel computers. Improving the performance and scalability of bioinformatics tools thus becomes a critical step in the quest to transform ever-growing raw genomics data into biological knowledge. In this paper we describe an efficient parallel implementation of a profile hidden Markov models (profile HMMs) code used for protein domain identification, along with auto-tuned parallel I/O optimization. Experimental results show linear speedup with increasing numbers of computing cores on a supercomputer, allowing the domain identification of millions of proteins in few minutes using hundreds of thousands computing cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高度可扩展的生物序列分析的自动调优并行I/O
近年来,由于测序技术的显著进步,基因组学序列生成的速度急剧增加。基因组学数据正以指数级的速度积累在世界各地的各种数据库中,快速分析技术将促进医学和生物技术领域的知识发现。分析这种不断增长的序列数据库需要巨大的计算能力,而这只能由大规模并行计算机提供。因此,提高生物信息学工具的性能和可扩展性成为将不断增长的原始基因组学数据转化为生物学知识的关键一步。本文描述了用于蛋白质结构域识别的隐马尔可夫模型(profile hmm)代码的高效并行实现,以及自动调优并行I/O优化。实验结果表明,随着超级计算机计算核心数量的增加,速度呈线性增长,使用数十万个计算核心,可以在几分钟内识别数百万个蛋白质的结构域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autotuned parallel I/O for highly scalable biosequence analysis A European framework to build science gateways: architecture and use cases Using the TeraGrid to teach scientific computing A scalable multi-scale framework for parallel simulation and visualization of microbial evolution Coming to consensus on competencies for petascale computing education and training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1