Opening a lockbox through physical exploration

Manuel Baum, Matthew Bernstein, Roberto Martín-Martín, S. Höfer, Johannes Kulick, M. Toussaint, A. Kacelnik, O. Brock
{"title":"Opening a lockbox through physical exploration","authors":"Manuel Baum, Matthew Bernstein, Roberto Martín-Martín, S. Höfer, Johannes Kulick, M. Toussaint, A. Kacelnik, O. Brock","doi":"10.1109/HUMANOIDS.2017.8246913","DOIUrl":null,"url":null,"abstract":"How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanical puzzles, called lockboxes. Biologists have discovered that cockatoos are intrinsically motivated to explore and solve such problems through physical explorative behavior. In this work, we study how different strategies shape the robots' exploration, given basic perception-action skills. Our evaluation highlights the influence of different statistical priors on the performance of the exploration strategies, showing that not only a range of computational methods, but also a range of priors could explain different exploration behaviors. We carry out our study of exploration strategies both in simulation and on two robot platforms. This first step towards a fully integrated real-world system allowed us to identify and remove limitations of our prior theoretical work on cross-entropy-based exploration when applied to complex realistic scenarios. In this paper we propose novel variants of this strategy and our experiments verify that the cross-entropy method performs well on a physical lockbox analogue of the cockatoo apparatus, and can generalize to lockboxes of different properties.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanical puzzles, called lockboxes. Biologists have discovered that cockatoos are intrinsically motivated to explore and solve such problems through physical explorative behavior. In this work, we study how different strategies shape the robots' exploration, given basic perception-action skills. Our evaluation highlights the influence of different statistical priors on the performance of the exploration strategies, showing that not only a range of computational methods, but also a range of priors could explain different exploration behaviors. We carry out our study of exploration strategies both in simulation and on two robot platforms. This first step towards a fully integrated real-world system allowed us to identify and remove limitations of our prior theoretical work on cross-entropy-based exploration when applied to complex realistic scenarios. In this paper we propose novel variants of this strategy and our experiments verify that the cross-entropy method performs well on a physical lockbox analogue of the cockatoo apparatus, and can generalize to lockboxes of different properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过物理探索打开一个锁箱
当谈到与环境的智能互动时,我们如何缩小动物和机器人之间的差距?在我们寻求答案的过程中,我们研究了物理探索复杂机械谜题的问题,称为锁箱。生物学家发现,凤头鹦鹉有内在的动机,通过身体探索行为来探索和解决这些问题。在这项工作中,我们研究了不同的策略如何影响机器人的探索,给出了基本的感知-行动技能。我们的评价突出了不同统计先验对勘探策略性能的影响,表明不仅有一系列的计算方法,而且有一系列的先验可以解释不同的勘探行为。我们在仿真和两个机器人平台上进行了探索策略的研究。这是迈向完全集成的现实世界系统的第一步,使我们能够在应用于复杂的现实场景时识别并消除基于交叉熵的探索的先前理论工作的局限性。在本文中,我们提出了该策略的新变体,并且我们的实验验证了交叉熵方法在模拟凤头鹦鹉装置的物理锁箱上表现良好,并且可以推广到不同性质的锁箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1