Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram

L. Vassio, M. Garetto, C. Chiasserini, Emilio Leonardi
{"title":"Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram","authors":"L. Vassio, M. Garetto, C. Chiasserini, Emilio Leonardi","doi":"10.1145/3487351.3488340","DOIUrl":null,"url":null,"abstract":"A relevant fraction of human interactions occurs on online social networks. Freshness of content seems to play an important role, with content popularity rapidly vanishing over time. In this paper, we investigate how influencers' generated content (i.e., posts) attracts interactions, measured by number of likes or reactions. We analyse the activity of Italian influencers and followers over more than 5 years, focusing on two popular social networks: Facebook and Instagram, including more than 13 billion interactions and about 4 million posts. We characterise the influencers' and followers' behaviour over time, show that influencers' posts are short-lived with an exponential temporal decay, and characterise the time evolution of the interactions from their initial peak till the end of a post lifetime. Finally, leveraging our findings, we discuss how they can be exploited to develop an analytical model of the interactions temporal dynamics.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"18 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A relevant fraction of human interactions occurs on online social networks. Freshness of content seems to play an important role, with content popularity rapidly vanishing over time. In this paper, we investigate how influencers' generated content (i.e., posts) attracts interactions, measured by number of likes or reactions. We analyse the activity of Italian influencers and followers over more than 5 years, focusing on two popular social networks: Facebook and Instagram, including more than 13 billion interactions and about 4 million posts. We characterise the influencers' and followers' behaviour over time, show that influencers' posts are short-lived with an exponential temporal decay, and characterise the time evolution of the interactions from their initial peak till the end of a post lifetime. Finally, leveraging our findings, we discuss how they can be exploited to develop an analytical model of the interactions temporal dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facebook和Instagram上帖子的时间动态和影响者的用户参与度
人类互动的相关部分发生在在线社交网络上。内容的新鲜度似乎起着重要作用,随着时间的推移,内容的受欢迎程度会迅速消失。在本文中,我们研究了网红生成的内容(即帖子)如何吸引互动,通过点赞或反应的数量来衡量。我们分析了意大利网红和粉丝在5年多时间里的活动,重点关注两个流行的社交网络:Facebook和Instagram,其中包括超过130亿次互动和大约400万条帖子。我们描述了影响者和追随者随时间的行为特征,表明影响者的帖子是短暂的,具有指数级的时间衰减,并描述了互动从最初的高峰到帖子生命周期结束的时间演变。最后,利用我们的发现,我们讨论了如何利用它们来开发相互作用时间动态的分析模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1