{"title":"Conceptual DFT as a Helpful Chemoinformatics Tool for the Study of the Clavanin Family of Antimicrobial Marine Peptides","authors":"N. Flores-Holguín, J. Frau, D. Glossman-Mitnik","doi":"10.5772/INTECHOPEN.88657","DOIUrl":null,"url":null,"abstract":"A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the clavanin family of antimicrobial marine peptides. A methodology based on conceptual density functional theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Fukui functions. Finally, the drug-likenesses and the bioactivity scores for the clavanin peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties like the pKas were determined following a methodology developed by our group.","PeriodicalId":403695,"journal":{"name":"Density Functional Theory Calculations","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Density Functional Theory Calculations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the clavanin family of antimicrobial marine peptides. A methodology based on conceptual density functional theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Fukui functions. Finally, the drug-likenesses and the bioactivity scores for the clavanin peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties like the pKas were determined following a methodology developed by our group.