GPU-BTM: A Topic Model for Short Text using Auxiliary Information

Yibing Guo, Yutao Huang, Ye Ding, Shuhan Qi, Xuan Wang, Qing Liao
{"title":"GPU-BTM: A Topic Model for Short Text using Auxiliary Information","authors":"Yibing Guo, Yutao Huang, Ye Ding, Shuhan Qi, Xuan Wang, Qing Liao","doi":"10.1109/DSC50466.2020.00037","DOIUrl":null,"url":null,"abstract":"Recently, short texts become very popular in social life. To understand short texts, researchers develop topic models to extract topic information. However, conventional topic models mainly focus on long documents which cannot deal with the sparsity problem of short text. In this paper, we propose a novel topic model for short text called GPU-BTM, which incorporates Generalized Pólya Urn technique into Biterm Topic Model. GPU-BTM utilizes the similarity information and the co-occurrence pattern of words simultaneously to handle the sparsity problem. Specifically, the GPU module considers the similarity information among words, so that GPU-BTM generates more coherent topics. On the other hand, BTM module tries to capture the co-occurrence pattern of words so that the enriched contexts relieve the data sparsity problem. In the experiment part, the results demonstrate that GPU-BTM model outperforms four latest comparison models on two real world short text datasets.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, short texts become very popular in social life. To understand short texts, researchers develop topic models to extract topic information. However, conventional topic models mainly focus on long documents which cannot deal with the sparsity problem of short text. In this paper, we propose a novel topic model for short text called GPU-BTM, which incorporates Generalized Pólya Urn technique into Biterm Topic Model. GPU-BTM utilizes the similarity information and the co-occurrence pattern of words simultaneously to handle the sparsity problem. Specifically, the GPU module considers the similarity information among words, so that GPU-BTM generates more coherent topics. On the other hand, BTM module tries to capture the co-occurrence pattern of words so that the enriched contexts relieve the data sparsity problem. In the experiment part, the results demonstrate that GPU-BTM model outperforms four latest comparison models on two real world short text datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-BTM:基于辅助信息的短文本主题模型
最近,短信在社会生活中变得非常流行。为了理解短文本,研究者开发了主题模型来提取主题信息。然而,传统的主题模型主要关注长文档,无法解决短文本的稀疏性问题。本文提出了一种新的短文本主题模型GPU-BTM,该模型将广义Pólya Urn技术融入到Biterm主题模型中。GPU-BTM同时利用相似度信息和词的共现模式来处理稀疏性问题。具体来说,GPU模块考虑了词之间的相似度信息,使得GPU- btm生成更连贯的主题。另一方面,BTM模块试图捕获词的共现模式,使丰富的上下文减轻数据稀疏性问题。在实验部分,结果表明GPU-BTM模型在两个真实世界的短文本数据集上优于四种最新的比较模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Parallel Algorithm for Graph Transaction Based Frequent Subgraph Mining A Review of APT Attack Detection Methods and Defense Strategies Temperature Prediction Modeling and Control Parameter optimization Based on Data Driven GPU-BTM: A Topic Model for Short Text using Auxiliary Information An APT Attack Analysis Framework Based on Self-define Rules and Mapreduce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1