Stock Market Prediction and Portfolio Optimization

Atharva Gondkar, Jeevan Thukrul, Raghav Bang, S. Rakshe, S. Sarode
{"title":"Stock Market Prediction and Portfolio Optimization","authors":"Atharva Gondkar, Jeevan Thukrul, Raghav Bang, S. Rakshe, S. Sarode","doi":"10.1109/GCAT52182.2021.9587659","DOIUrl":null,"url":null,"abstract":"The highly volatile nature of the stock market has made stock price prediction as challenging as weather forecasting. Consequently, as a hint of this dread, people don’t invest in the stock market. In this paper, we have discussed hybrid networks and a stacked LSTM network for stock price prediction. Additionally, it also focuses on portfolio optimization done using six different techniques, which focuses on creating best performing portfolios categorized on the basis of sectors. One hybrid neural network consists of 1D-Convolutional layers and LSTM layers, and the other is a combination of GRU and LSTM layers. The stock prices of SBI, Indian Bank, Bank of India are predicted using stacked LSTM and Hybrid Neural Networks and compared using the sliding window of time steps with variable width. The neural networks predict the following day’s closing price using a variable sliding window. The RMSE, MSE, and MAE are used to evaluate the efficiency of these neural networks. The hybrid network is proving to be more competent in various situations.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The highly volatile nature of the stock market has made stock price prediction as challenging as weather forecasting. Consequently, as a hint of this dread, people don’t invest in the stock market. In this paper, we have discussed hybrid networks and a stacked LSTM network for stock price prediction. Additionally, it also focuses on portfolio optimization done using six different techniques, which focuses on creating best performing portfolios categorized on the basis of sectors. One hybrid neural network consists of 1D-Convolutional layers and LSTM layers, and the other is a combination of GRU and LSTM layers. The stock prices of SBI, Indian Bank, Bank of India are predicted using stacked LSTM and Hybrid Neural Networks and compared using the sliding window of time steps with variable width. The neural networks predict the following day’s closing price using a variable sliding window. The RMSE, MSE, and MAE are used to evaluate the efficiency of these neural networks. The hybrid network is proving to be more competent in various situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票市场预测与投资组合优化
股市的高度波动性使得股价预测和天气预报一样具有挑战性。因此,作为这种恐惧的暗示,人们不投资股市。在本文中,我们讨论了用于股票价格预测的混合网络和堆叠LSTM网络。此外,它还关注使用六种不同技术完成的投资组合优化,这些技术侧重于创建基于行业分类的最佳表现投资组合。一种混合神经网络由1d -卷积层和LSTM层组成,另一种混合神经网络由GRU层和LSTM层组成。采用堆叠LSTM和混合神经网络对SBI、印度银行和印度银行的股价进行了预测,并采用变宽时间步长滑动窗口进行了比较。神经网络使用可变滑动窗口预测第二天的收盘价。使用RMSE、MSE和MAE来评估这些神经网络的效率。事实证明,混合网络在各种情况下都更有能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Detection and Script Identification from Images using CNN An Analysis of Applications of Nanotechnology in Science and Engineering Design & Development of Insurance Money Predictor to Claim with Insurance Company Modified Non-Linear Programming Methodology for Multi-Attribute Decision-Making Problem with Interval-Valued Intuitionistic Fuzzy Soft Sets Information Distributed File Storage Model using IPFS and Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1