kNN estimation of the unilateral dependency measure between random variables

A. Cataron, Răzvan Andonie, Y. Chueh
{"title":"kNN estimation of the unilateral dependency measure between random variables","authors":"A. Cataron, Răzvan Andonie, Y. Chueh","doi":"10.1109/CIDM.2014.7008705","DOIUrl":null,"url":null,"abstract":"The informational energy (IE) can be interpreted as a measure of average certainty. In previous work, we have introduced a non-parametric asymptotically unbiased and consistent estimator of the IE. Our method was based on the kth nearest neighbor (kNN) method, and it can be applied to both continuous and discrete spaces, meaning that we can use it both in classification and regression algorithms. Based on the IE, we have introduced a unilateral dependency measure between random variables. In the present paper, we show how to estimate this unilateral dependency measure from an available sample set of discrete or continuous variables, using the kNN and the naïve histogram estimators. We experimentally compare the two estimators. Then, in a real-world application, we apply the kNN and the histogram estimators to approximate the unilateral dependency between random variables which describe the temperatures of sensors placed in a refrigerating room.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The informational energy (IE) can be interpreted as a measure of average certainty. In previous work, we have introduced a non-parametric asymptotically unbiased and consistent estimator of the IE. Our method was based on the kth nearest neighbor (kNN) method, and it can be applied to both continuous and discrete spaces, meaning that we can use it both in classification and regression algorithms. Based on the IE, we have introduced a unilateral dependency measure between random variables. In the present paper, we show how to estimate this unilateral dependency measure from an available sample set of discrete or continuous variables, using the kNN and the naïve histogram estimators. We experimentally compare the two estimators. Then, in a real-world application, we apply the kNN and the histogram estimators to approximate the unilateral dependency between random variables which describe the temperatures of sensors placed in a refrigerating room.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机变量间单边依赖测度的kNN估计
信息能量(IE)可以解释为平均确定性的度量。在以前的工作中,我们已经引入了IE的非参数渐近无偏一致估计量。我们的方法是基于第k近邻(kNN)方法,它可以应用于连续和离散空间,这意味着我们可以在分类和回归算法中使用它。基于IE,我们引入了随机变量之间的单边依赖度量。在本文中,我们展示了如何使用kNN和naïve直方图估计器从可用的离散或连续变量样本集估计这种单边依赖度量。我们通过实验比较了这两种估计。然后,在实际应用中,我们应用kNN和直方图估计器来近似描述放置在冷藏室中的传感器温度的随机变量之间的单边依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1