Scene graph generation via multi-relation classification and cross-modal attention coordinator

Xiaoyi Zhang, Zheng Wang, Xing Xu, Jiwei Wei, Yang Yang
{"title":"Scene graph generation via multi-relation classification and cross-modal attention coordinator","authors":"Xiaoyi Zhang, Zheng Wang, Xing Xu, Jiwei Wei, Yang Yang","doi":"10.1145/3444685.3446276","DOIUrl":null,"url":null,"abstract":"Scene graph generation intends to build graph-based representation from images, where nodes and edges respectively represent objects and relationships between them. However, scene graph generation today is heavily limited by imbalanced class prediction. Specifically, most of existing work achieves satisfying performance on simple and frequent relation classes (e.g. on), yet leaving poor performance with fine-grained and infrequent ones (e.g. walk on, stand on). To tackle this problem, in this paper, we redesign the framework as two branches, representation learning branch and classifier learning branch, for a more balanced scene graph generator. Furthermore, for representation learning branch, we propose Cross-modal Attention Coordinator (CAC) to gather consistent features from multi-modal using dynamic attention. For classifier learning branch, we first transfer relation classes' knowledge from large scale corpus, then we leverage Multi-Relationship classifier via Graph Attention neTworks (MR-GAT) to bridge the gap between frequent relations and infrequent ones. The comprehensive experimental results on VG200, a challenge dataset, indicate the competitiveness and the significant superiority of our proposed approach.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene graph generation intends to build graph-based representation from images, where nodes and edges respectively represent objects and relationships between them. However, scene graph generation today is heavily limited by imbalanced class prediction. Specifically, most of existing work achieves satisfying performance on simple and frequent relation classes (e.g. on), yet leaving poor performance with fine-grained and infrequent ones (e.g. walk on, stand on). To tackle this problem, in this paper, we redesign the framework as two branches, representation learning branch and classifier learning branch, for a more balanced scene graph generator. Furthermore, for representation learning branch, we propose Cross-modal Attention Coordinator (CAC) to gather consistent features from multi-modal using dynamic attention. For classifier learning branch, we first transfer relation classes' knowledge from large scale corpus, then we leverage Multi-Relationship classifier via Graph Attention neTworks (MR-GAT) to bridge the gap between frequent relations and infrequent ones. The comprehensive experimental results on VG200, a challenge dataset, indicate the competitiveness and the significant superiority of our proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多关系分类和跨模态注意协调器的场景图生成
场景图生成旨在从图像中构建基于图的表示,其中节点和边分别表示对象及其之间的关系。然而,今天的场景图生成受到不平衡的类别预测的严重限制。具体来说,大多数现有的工作在简单和频繁的关系类(例如on)上实现了令人满意的性能,但是在细粒度和不频繁的关系类(例如walk on, stand on)上留下了较差的性能。为了解决这个问题,本文将框架重新设计为两个分支,表示学习分支和分类器学习分支,以获得更平衡的场景图生成器。此外,对于表征学习分支,我们提出了跨模态注意协调器(Cross-modal Attention Coordinator, CAC),利用动态注意从多模态中收集一致的特征。对于分类器学习分支,我们首先从大规模语料库中迁移关系类的知识,然后通过图注意网络(MR-GAT)利用多关系分类器来弥合频繁关系和不频繁关系之间的差距。在挑战数据集VG200上的综合实验结果表明,本文提出的方法具有竞争力和显著的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1