{"title":"Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding","authors":"Ian Blanes, J. Serra-Sagristà","doi":"10.1109/DCC.2009.7","DOIUrl":null,"url":null,"abstract":"The RKLT is a lossless approximation to the KLT, and has been recently employed for progressive lossy-to-lossless coding of hyperspectral images. Both yield very good coding performance results, but at a high computational price. In this paper we investigate two RKLT clustering approaches to lessen the computational complexity problem: a normal clustering approach, which still yields good performance; and a multi-level clustering approach, which has almost no quality penalty as compared to the original RKLT. Analysis of rate-distortion evolution and of lossless compression ratio is provided. The proposed approaches supply additional benefits, such as spectral scalability, and a decrease of the side information needed to invert the transform. Furthermore,since with a clustering approach, SERM factorization coefficients are bounded to a finite range, the proposed methods allow coding of large three dimensional images within JPEG2000.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The RKLT is a lossless approximation to the KLT, and has been recently employed for progressive lossy-to-lossless coding of hyperspectral images. Both yield very good coding performance results, but at a high computational price. In this paper we investigate two RKLT clustering approaches to lessen the computational complexity problem: a normal clustering approach, which still yields good performance; and a multi-level clustering approach, which has almost no quality penalty as compared to the original RKLT. Analysis of rate-distortion evolution and of lossless compression ratio is provided. The proposed approaches supply additional benefits, such as spectral scalability, and a decrease of the side information needed to invert the transform. Furthermore,since with a clustering approach, SERM factorization coefficients are bounded to a finite range, the proposed methods allow coding of large three dimensional images within JPEG2000.