Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption

Suejb Memeti, Lu Li, Sabri Pllana, J. Kolodziej, C. Kessler
{"title":"Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption","authors":"Suejb Memeti, Lu Li, Sabri Pllana, J. Kolodziej, C. Kessler","doi":"10.1145/3110355.3110356","DOIUrl":null,"url":null,"abstract":"Many modern parallel computing systems are heterogeneous at their node level. Such nodes may comprise general purpose CPUs and accelerators (such as, GPU, or Intel Xeon Phi) that provide high performance with suitable energy-consumption characteristics. However, exploiting the available performance of heterogeneous architectures may be challenging. There are various parallel programming frameworks (such as, OpenMP, OpenCL, OpenACC, CUDA) and selecting the one that is suitable for a target context is not straightforward. In this paper, we study empirically the characteristics of OpenMP, OpenACC, OpenCL, and CUDA with respect to programming productivity, performance, and energy. To evaluate the programming productivity we use our homegrown tool CodeStat, which enables us to determine the percentage of code lines required to parallelize the code using a specific framework. We use our tools MeterPU and x-MeterPU to evaluate the energy consumption and the performance. Experiments are conducted using the industry-standard SPEC benchmark suite and the Rodinia benchmark suite for accelerated computing on heterogeneous systems that combine Intel Xeon E5 Processors with a GPU accelerator or an Intel Xeon Phi co-processor.","PeriodicalId":309271,"journal":{"name":"ARMS-CC@PODC","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARMS-CC@PODC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110355.3110356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

Many modern parallel computing systems are heterogeneous at their node level. Such nodes may comprise general purpose CPUs and accelerators (such as, GPU, or Intel Xeon Phi) that provide high performance with suitable energy-consumption characteristics. However, exploiting the available performance of heterogeneous architectures may be challenging. There are various parallel programming frameworks (such as, OpenMP, OpenCL, OpenACC, CUDA) and selecting the one that is suitable for a target context is not straightforward. In this paper, we study empirically the characteristics of OpenMP, OpenACC, OpenCL, and CUDA with respect to programming productivity, performance, and energy. To evaluate the programming productivity we use our homegrown tool CodeStat, which enables us to determine the percentage of code lines required to parallelize the code using a specific framework. We use our tools MeterPU and x-MeterPU to evaluate the energy consumption and the performance. Experiments are conducted using the industry-standard SPEC benchmark suite and the Rodinia benchmark suite for accelerated computing on heterogeneous systems that combine Intel Xeon E5 Processors with a GPU accelerator or an Intel Xeon Phi co-processor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对OpenCL、OpenACC、OpenMP和CUDA进行基准测试:编程效率、性能和能耗
许多现代并行计算系统在其节点级别上是异构的。这些节点可能包括通用cpu和加速器(如GPU或Intel Xeon Phi),它们提供具有适当能耗特性的高性能。然而,利用异构体系结构的可用性能可能具有挑战性。有各种各样的并行编程框架(如OpenMP、OpenCL、OpenACC、CUDA),选择一个适合目标上下文的框架并不简单。在本文中,我们实证地研究了OpenMP、OpenACC、OpenCL和CUDA在编程效率、性能和能耗方面的特点。为了评估编程效率,我们使用自己开发的工具CodeStat,它使我们能够确定使用特定框架并行化代码所需的代码行百分比。我们使用我们的工具MeterPU和x-MeterPU来评估能耗和性能。使用行业标准SPEC基准套件和Rodinia基准套件进行实验,用于在异构系统上加速计算,这些系统将英特尔至强E5处理器与GPU加速器或英特尔至强Phi协处理器结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An RLS Memory-based Mechanism for the Automatic Adaptation of VMs on Cloud Environments A Distributed and Fault Tolerant Robotic Localisation and Mapping in Network Edge Healthcare Sensor Data Management on the Cloud Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption Using Performance Forecasting to Accelerate Elasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1