System energy minimization via joint optimization of the DC-DC converter and the core

R. Abdallah, P. Shenoy, Naresh R Shanbhag, P. Krein
{"title":"System energy minimization via joint optimization of the DC-DC converter and the core","authors":"R. Abdallah, P. Shenoy, Naresh R Shanbhag, P. Krein","doi":"10.1109/ISLPED.2011.5993614","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of designing energy-efficient embedded systems by jointly optimizing the power consumption of both the DC-DC converter and the computational core. Past work has shown that there exists a minimum energy operating point (MEOP) in the subthreshold region for computational cores (C-MEOP), at which the dynamic and leakage powers are balanced. The MEOP is defined by the 3-tuple consisting of the optimum energy consumption E∗, optimum voltage V∗ and optimum frequency f∗. First, we show that the DC-DC converter losses in dynamic voltage scaling (DVS) cause the overall system MEOP (S-MEOP) to differ significantly from C-MEOP. Simulations in a 130-nm, 1.2V commercial CMOS process show that operation at S-MEOP results in a 45.5% energy savings over operating at a core voltage V∗C suggested by C-MEOP. The DC-DC converter efficiency is also improved by 2.2X. Second, we show that architectural techniques such as parallelization cause the S-MEOP to approach C-MEOP. Thus, it is sufficient to track C-MEOP — a much easier task on-chip — in order to account for process variations. We show that DC-DC converter losses reduces in subthreshold region but increases in superthreshold region when parallelization is employed. This observation leads us to propose a reconfigurable core architecture that improves the converter efficiency by 2.3X at C-MEOP, and makes energy consumption at S-MEOP and C-MEOP to be within 4% of each other, while improving throughput in the subthreshold region by at least 8X. Finally, we show that pipelining, which has been proposed to decrease core energy at C-MEOP while improving throughput [1], adversely affects the S-MEOP. The pipelined-core system energy at S-MEOP is 85% lower than the pipelined-core system energy when operating at the C-MEOP voltage V∗C.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper addresses the problem of designing energy-efficient embedded systems by jointly optimizing the power consumption of both the DC-DC converter and the computational core. Past work has shown that there exists a minimum energy operating point (MEOP) in the subthreshold region for computational cores (C-MEOP), at which the dynamic and leakage powers are balanced. The MEOP is defined by the 3-tuple consisting of the optimum energy consumption E∗, optimum voltage V∗ and optimum frequency f∗. First, we show that the DC-DC converter losses in dynamic voltage scaling (DVS) cause the overall system MEOP (S-MEOP) to differ significantly from C-MEOP. Simulations in a 130-nm, 1.2V commercial CMOS process show that operation at S-MEOP results in a 45.5% energy savings over operating at a core voltage V∗C suggested by C-MEOP. The DC-DC converter efficiency is also improved by 2.2X. Second, we show that architectural techniques such as parallelization cause the S-MEOP to approach C-MEOP. Thus, it is sufficient to track C-MEOP — a much easier task on-chip — in order to account for process variations. We show that DC-DC converter losses reduces in subthreshold region but increases in superthreshold region when parallelization is employed. This observation leads us to propose a reconfigurable core architecture that improves the converter efficiency by 2.3X at C-MEOP, and makes energy consumption at S-MEOP and C-MEOP to be within 4% of each other, while improving throughput in the subthreshold region by at least 8X. Finally, we show that pipelining, which has been proposed to decrease core energy at C-MEOP while improving throughput [1], adversely affects the S-MEOP. The pipelined-core system energy at S-MEOP is 85% lower than the pipelined-core system energy when operating at the C-MEOP voltage V∗C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过DC-DC变换器和核心的联合优化实现系统能量最小化
本文通过对DC-DC变换器和计算核心的功耗进行联合优化,解决了节能嵌入式系统的设计问题。以往的研究表明,计算核的亚阈值区域存在一个最小能量工作点(MEOP),在该点处,动态功率和泄漏功率达到平衡。MEOP由最优能量消耗E *、最优电压V *和最优频率f *组成的三元组定义。首先,我们证明了动态电压缩放(DVS)中的DC-DC转换器损耗导致整体系统MEOP (S-MEOP)与C-MEOP显著不同。在130 nm, 1.2V商用CMOS工艺中进行的仿真表明,在S-MEOP下运行比在C- meop建议的核心电压V * C下运行节省45.5%的能量。DC-DC变换器效率也提高了2.2倍。其次,我们展示了诸如并行化之类的架构技术使S-MEOP接近C-MEOP。因此,跟踪C-MEOP就足够了——这在芯片上是一项更容易的任务——以便解释工艺变化。我们发现当并行化时,DC-DC变换器的损耗在亚阈值区域降低,而在超阈值区域增加。这一观察结果使我们提出了一种可重构的核心架构,该架构将C-MEOP的转换器效率提高了2.3倍,并使S-MEOP和C-MEOP的能耗相差在4%以内,同时将亚阈值区域的吞吐量提高了至少8倍。最后,我们发现流水线(pipelining)虽然可以降低C-MEOP的核心能量,同时提高吞吐量[1],但对S-MEOP有不利影响。S-MEOP下的管芯系统能量比C- meop电压V * C下的管芯系统能量低85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Processor caches built using multi-level spin-transfer torque RAM cells Object-based local dimming for LCD systems with LED BLUs Near-/sub-threshold DLL-based clock generator with PVT-aware locking range compensation Learning to manage combined energy supply systems An energy-efficient adaptive hybrid cache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1