An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles

Dominik Vietinghoff, Christian Heine, M. Böttinger, G. Scheuermann
{"title":"An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles","authors":"Dominik Vietinghoff, Christian Heine, M. Böttinger, G. Scheuermann","doi":"10.1109/PacificVis52677.2021.00014","DOIUrl":null,"url":null,"abstract":"To assess the reliability of weather forecasts and climate simulations, common practice is to generate large ensembles of numerical simulations. Analyzing such data is challenging and requires pattern and feature detection. For single time-dependent scalar fields, empirical orthogonal functions (EOFs) are a proven means to identify the main variation. In this paper, we present an extension of that concept to time-dependent ensemble data. We applied our methods to two ensemble data sets from climate research in order to investigate the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To assess the reliability of weather forecasts and climate simulations, common practice is to generate large ensembles of numerical simulations. Analyzing such data is challenging and requires pattern and feature detection. For single time-dependent scalar fields, empirical orthogonal functions (EOFs) are a proven means to identify the main variation. In this paper, we present an extension of that concept to time-dependent ensemble data. We applied our methods to two ensemble data sets from climate research in order to investigate the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维标量场系综分析中经验正交函数的推广
为了评估天气预报和气候模拟的可靠性,通常的做法是生成大型数值模拟集合。分析这样的数据是具有挑战性的,需要模式和特征检测。对于单个时相关标量场,经验正交函数(EOFs)是一种被证明的识别主变分的方法。在本文中,我们将这一概念扩展到时间相关的集合数据。为了研究北大西洋涛动(NAO)和东大西洋涛动(EA)的模式,我们将我们的方法应用于气候研究的两个集合数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1