A Survey on Privacy-Preserving Outsourced Data on Cloud with Multiple Data Providers

A. Chauhan, D. Rani, Akash Kumar, Rishabh Gupta, Ashutosh Kumar Singh
{"title":"A Survey on Privacy-Preserving Outsourced Data on Cloud with Multiple Data Providers","authors":"A. Chauhan, D. Rani, Akash Kumar, Rishabh Gupta, Ashutosh Kumar Singh","doi":"10.2139/ssrn.3601814","DOIUrl":null,"url":null,"abstract":"Deep Learning has become the most common technique used in different fields like pattern recognition, weather prediction, medical diagnosis, banking sectors, aerospace and defense, data mining applications, image processing, speech recognition, cancer analysis, etc. The training of the model demands an enormous amount of data that is gathered from various data providers and sent to the cloud because they have limited storage and less computational resources. Cloud trains the model with the help of the gathered data. Also, data providers have genuine and confidential data that emerges the privacy issues, so to preserve privacy, the data is sent in the encrypted form and cannot be exposed to anyone and must be secured also. This paper focuses on the pros and cons of the different algorithms and techniques used for machine and deep learning models used for privacy preservation.","PeriodicalId":440596,"journal":{"name":"ICICC 2020: Proceedings","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICICC 2020: Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3601814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Deep Learning has become the most common technique used in different fields like pattern recognition, weather prediction, medical diagnosis, banking sectors, aerospace and defense, data mining applications, image processing, speech recognition, cancer analysis, etc. The training of the model demands an enormous amount of data that is gathered from various data providers and sent to the cloud because they have limited storage and less computational resources. Cloud trains the model with the help of the gathered data. Also, data providers have genuine and confidential data that emerges the privacy issues, so to preserve privacy, the data is sent in the encrypted form and cannot be exposed to anyone and must be secured also. This paper focuses on the pros and cons of the different algorithms and techniques used for machine and deep learning models used for privacy preservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多数据提供商云上保护隐私的外包数据调查
深度学习已经成为模式识别、天气预报、医疗诊断、银行业、航空航天和国防、数据挖掘应用、图像处理、语音识别、癌症分析等不同领域最常用的技术。模型的训练需要大量的数据,这些数据是从各种数据提供商那里收集的,并发送到云端,因为它们的存储空间有限,计算资源较少。Cloud借助收集到的数据来训练模型。此外,数据提供者拥有真实和机密的数据,这些数据出现了隐私问题,因此为了保护隐私,数据以加密形式发送,不能暴露给任何人,也必须加以保护。本文重点讨论了用于隐私保护的机器和深度学习模型的不同算法和技术的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on Privacy-Preserving Outsourced Data on Cloud with Multiple Data Providers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1