Printed Nitrogen-Doped Reduced Graphene Oxide Based Sensor For Uric Acid Detection

Ammara Ejaz, Saoirse Dervin, R. Dahiya
{"title":"Printed Nitrogen-Doped Reduced Graphene Oxide Based Sensor For Uric Acid Detection","authors":"Ammara Ejaz, Saoirse Dervin, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239567","DOIUrl":null,"url":null,"abstract":"This paper presents a flexible printed sensor for the accurate detection of uric acid (UA) by a simple chemical route synthesis. The sensitive nanomaterial (N-rGO) was prepared from the dual interaction of 1,4-xylenediamine (XDA) and Graphene oxide (GO) by covalent and $\\pi-\\pi$ stacking interaction. N-rGO was printed on a flexible polyvinyl chloride (PVC) substrate and analyzed in 0.1 M PBS, pH 7.4 electrolyte for different concentrations of UA. The sensor exhibited a wide segmented linear range of $3-40\\times 10^{-5}M$ and $1-8{\\mathrm {x}}10^{-3}{\\mathrm {M}}$ with a sensitivity of 0.733 ${\\mathrm {mAmM^{-1}}}$ and 0.0277 ${\\mathrm {mAmM^{-1}}}$ respectively. The 0.0077% standard deviation from 30 consecutive measurements suggests that the sensor exhibits excellent reproducibility. Thus, the presented sensor is an alternative to currently available commercial bulky UA sensors.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a flexible printed sensor for the accurate detection of uric acid (UA) by a simple chemical route synthesis. The sensitive nanomaterial (N-rGO) was prepared from the dual interaction of 1,4-xylenediamine (XDA) and Graphene oxide (GO) by covalent and $\pi-\pi$ stacking interaction. N-rGO was printed on a flexible polyvinyl chloride (PVC) substrate and analyzed in 0.1 M PBS, pH 7.4 electrolyte for different concentrations of UA. The sensor exhibited a wide segmented linear range of $3-40\times 10^{-5}M$ and $1-8{\mathrm {x}}10^{-3}{\mathrm {M}}$ with a sensitivity of 0.733 ${\mathrm {mAmM^{-1}}}$ and 0.0277 ${\mathrm {mAmM^{-1}}}$ respectively. The 0.0077% standard deviation from 30 consecutive measurements suggests that the sensor exhibits excellent reproducibility. Thus, the presented sensor is an alternative to currently available commercial bulky UA sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印刷氮掺杂还原氧化石墨烯传感器用于尿酸检测
本文提出了一种柔性印刷传感器,用于通过简单的化学合成方法精确检测尿酸(UA)。以1,4-二甲二胺(XDA)和氧化石墨烯(GO)为原料,通过共价和$\pi-\pi$叠加相互作用制备了N-rGO敏感纳米材料。将N-rGO打印在柔性聚氯乙烯(PVC)衬底上,并在0.1 M PBS, pH 7.4电解质中分析不同浓度的UA。该传感器具有3-40 × 10^{-5}M$和1-8 × 10^{-3}{\mathrm {x}} $的宽分段线性范围,灵敏度分别为0.733 ${\mathrm {mAmM^{-1}} $和0.0277 ${\mathrm {mAmM^{-1}}}$。30次连续测量的0.0077%标准偏差表明该传感器具有良好的再现性。因此,所提出的传感器是目前可用的商用笨重UA传感器的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wearable Wireless Power Transfer using Direct-Write Dispenser Printed Flexible Coils Binary Neural Network as a Flexible Integrated Circuit for Odour Classification Stretchable Wireless Sensor Skin for the Surface Monitoring of Soft Objects Assessing the Stability of Printed NWs by in situ SEM Characterisation Development of a Novel and Flexible MWCNT/PDMS Based Resistive Force Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1