Sentiment Classification for Beauty-fashion Reviews

L. Tran, Binh Van Duong, Binh T. Nguyen
{"title":"Sentiment Classification for Beauty-fashion Reviews","authors":"L. Tran, Binh Van Duong, Binh T. Nguyen","doi":"10.1109/KSE56063.2022.9953782","DOIUrl":null,"url":null,"abstract":"The fast growth of e-commerce markets helps companies bring their products closer to customers and lets users have many choices for online shopping. However, it causes the need to have a proper strategy to keep customers in every company. As a rising solution, sentiment analysis on users’ feedback using artificial intelligence is a timely-fashioned way for business owners to understand their customers and clients, which could help them improve their business against competitors. Therefore, in the scope of our research, we introduce our results on the task of customers’ review sentiment analysis using the dataset provided in the Fashion and Beauty Review Rating (one competition organized in Kaggle), where our solution reached first place with a score of 0.51269 RMSE. Our proposed solution combines deep learning models (Bidirectional Long Short-term Memory, Bidirectional Gated Recurrent Unit, Convolutional Neural Network) and a rule-based method (a method that uses linguistic rules to predict the rating of reviews). We can describe the solution in this paper with the support of analysis techniques to give more insightful points.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The fast growth of e-commerce markets helps companies bring their products closer to customers and lets users have many choices for online shopping. However, it causes the need to have a proper strategy to keep customers in every company. As a rising solution, sentiment analysis on users’ feedback using artificial intelligence is a timely-fashioned way for business owners to understand their customers and clients, which could help them improve their business against competitors. Therefore, in the scope of our research, we introduce our results on the task of customers’ review sentiment analysis using the dataset provided in the Fashion and Beauty Review Rating (one competition organized in Kaggle), where our solution reached first place with a score of 0.51269 RMSE. Our proposed solution combines deep learning models (Bidirectional Long Short-term Memory, Bidirectional Gated Recurrent Unit, Convolutional Neural Network) and a rule-based method (a method that uses linguistic rules to predict the rating of reviews). We can describe the solution in this paper with the support of analysis techniques to give more insightful points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向美时尚评论的情感分类
电子商务市场的快速发展有助于企业将产品更贴近消费者,并让用户在网上购物时有更多选择。然而,它导致需要有一个适当的战略,以保持客户在每个公司。作为一种新兴的解决方案,利用人工智能对用户的反馈进行情绪分析,是企业主了解客户和客户的一种及时的方式,可以帮助他们在竞争中提高业务水平。因此,在我们的研究范围内,我们使用Fashion and Beauty review Rating(在Kaggle组织的一场比赛)中提供的数据集介绍了我们在客户评论情感分析任务上的结果,我们的解决方案以0.51269 RMSE的分数获得了第一名。我们提出的解决方案结合了深度学习模型(双向长短期记忆、双向门控循环单元、卷积神经网络)和基于规则的方法(一种使用语言规则来预测评论评级的方法)。我们可以在分析技术的支持下描述本文的解决方案,以给出更有见地的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWEN: A novel method for accurate estimation of cell type compositions from bulk data samples Polygenic risk scores adaptation for Height in a Vietnamese population Sentiment Classification for Beauty-fashion Reviews An Automated Stub Method for Unit Testing C/C++ Projects Knowledge-based Problem Solving and Reasoning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1