M. Trinelli, Massimo Gallo, M. Rifai, Fabio Pianese
{"title":"Transparent AR Processing Acceleration at the Edge","authors":"M. Trinelli, Massimo Gallo, M. Rifai, Fabio Pianese","doi":"10.1145/3301418.3313942","DOIUrl":null,"url":null,"abstract":"Mobile devices are increasingly capable of supporting advanced functionalities but still face fundamental resource limitations. While the development of custom accelerators for compute-intensive functions is progressing, precious battery life and quality vs. latency trade-offs are limiting the potential of applications relying on processing real-time, computational-intensive functions, such as Augmented Reality. Transparent network support for on-the-fly media processing at the edge can significantly extend the capabilities of mobile devices without the need for API changes. In this paper we introduce NEAR, a framework for transparent live video processing and augmentation at the network edge, along with its architecture and preliminary performance evaluation in an object detection use case.","PeriodicalId":131097,"journal":{"name":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301418.3313942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Mobile devices are increasingly capable of supporting advanced functionalities but still face fundamental resource limitations. While the development of custom accelerators for compute-intensive functions is progressing, precious battery life and quality vs. latency trade-offs are limiting the potential of applications relying on processing real-time, computational-intensive functions, such as Augmented Reality. Transparent network support for on-the-fly media processing at the edge can significantly extend the capabilities of mobile devices without the need for API changes. In this paper we introduce NEAR, a framework for transparent live video processing and augmentation at the network edge, along with its architecture and preliminary performance evaluation in an object detection use case.