Multimodal Emotion Recognition for AVEC 2016 Challenge

Filip Povolný, P. Matejka, Michal Hradiš, A. Popková, Lubomír Otrusina, P. Smrz, Ian D. Wood, Cécile Robin, L. Lamel
{"title":"Multimodal Emotion Recognition for AVEC 2016 Challenge","authors":"Filip Povolný, P. Matejka, Michal Hradiš, A. Popková, Lubomír Otrusina, P. Smrz, Ian D. Wood, Cécile Robin, L. Lamel","doi":"10.1145/2988257.2988268","DOIUrl":null,"url":null,"abstract":"This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AVEC 2016挑战赛多模态情绪识别
本文介绍了一种情绪识别系统及其在AV+EC 2016情绪识别挑战赛数据集上的应用。制作完成的系统并提交给AV+EC 2016评估,使用了所有三种模式(音频、视频和生理数据)。我们的工作主要集中在源自音频的功能上。在原有音频特征的基础上补充瓶颈特征和基于文本的情感识别,即通过自动语音识别系统转录音频,利用词嵌入模型和情感词汇等资源进行情感识别。我们的多模态融合在开发集上达到了CCC=0.855,在效价集上达到了0.713。唤醒和效价在测试集上的CCC值分别为0.719和0.596。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Depression using Vocal, Facial and Semantic Communication Cues Multimodal Emotion Recognition for AVEC 2016 Challenge Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016 Session details: Depression recognition Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1