A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks

Songhwai Oh, L. Schenato, S. Sastry
{"title":"A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks","authors":"Songhwai Oh, L. Schenato, S. Sastry","doi":"10.1109/ROBOT.2005.1570439","DOIUrl":null,"url":null,"abstract":"Multiple-target tracking is a canonical application of sensor networks as it exhibits different aspects of sensor networks such as event detection, sensor information fusion, multi-hop communication, sensor management and decision making. The task of tracking multiple objects in a sensor network is challenging due to constraints on a sensor node such as short communication and sensing ranges, a limited amount of memory and limited computational power. In addition, since a sensor network surveillance system needs to operate autonomously without human operators, it requires an autonomous tracking algorithm which can track an unknown number of targets. In this paper, we develop a scalable hierarchical multiple-target tracking algorithm that is autonomous and robust against transmission failures, communication delays and sensor localization error.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

Multiple-target tracking is a canonical application of sensor networks as it exhibits different aspects of sensor networks such as event detection, sensor information fusion, multi-hop communication, sensor management and decision making. The task of tracking multiple objects in a sensor network is challenging due to constraints on a sensor node such as short communication and sensing ranges, a limited amount of memory and limited computational power. In addition, since a sensor network surveillance system needs to operate autonomously without human operators, it requires an autonomous tracking algorithm which can track an unknown number of targets. In this paper, we develop a scalable hierarchical multiple-target tracking algorithm that is autonomous and robust against transmission failures, communication delays and sensor localization error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络的分层多目标跟踪算法
多目标跟踪是传感器网络的一个典型应用,它体现了传感器网络的事件检测、传感器信息融合、多跳通信、传感器管理和决策等不同方面。由于传感器节点的限制,如短通信和传感范围,有限的内存和有限的计算能力,跟踪传感器网络中的多个目标的任务具有挑战性。此外,由于传感器网络监控系统需要在没有人工操作的情况下自主运行,因此需要一种能够跟踪未知数量目标的自主跟踪算法。在本文中,我们开发了一种可扩展的分层多目标跟踪算法,该算法对传输故障、通信延迟和传感器定位错误具有自主和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis and Fault Tolerant Control for Wheeled Mobile Robots under Unknown Environments: A Survey Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract Problem Analysis and Preliminary Technological Activity A Fixed– Camera Controller for Visual Guidance of Mobile Robots via Velocity Fields Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1