Dielectric Disk Accelerator for High Gradient Short Pulse Two-Beam Wakefield Acceleration

C. Jing, J. Shao, J. Power, M. Conde, S. Doran
{"title":"Dielectric Disk Accelerator for High Gradient Short Pulse Two-Beam Wakefield Acceleration","authors":"C. Jing, J. Shao, J. Power, M. Conde, S. Doran","doi":"10.1109/AAC.2018.8659397","DOIUrl":null,"url":null,"abstract":"In the last two decades, the theoretical and experimental investigations of dielectric accelerating structures for application to wakefield acceleration have predominantly used a dielectric-lined waveguide, due to its simple geometry (i.e. low fabrication cost). However, in comparison with the prevailing metallic disk-loaded accelerators, the dielectric-lined waveguide suffers from a lower Q-factor and lower shunt impedance. We are developing a new dielectric disk accelerator. The preliminary simulation shows that, even with 5×10−4 of loss tangent dielectric material $(E_{r}=50)$, we can achieve ~200 MΩ/m shunt impedance at 26 GHz traveling wave operation (the beam aperture is kept the same in the comparison), which is 4 times higher than those of the conventional dielectric loaded accelerator. The dielectric disk accelerator can overcome conventional limitations on high gradient, high efficiency dielectric accelerator, leading to a breakthrough in the performance of the two-beam accelerator, one of the most promising technologies in the category of advanced accelerator concepts for high energy physics research applications.","PeriodicalId":339772,"journal":{"name":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AAC.2018.8659397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the last two decades, the theoretical and experimental investigations of dielectric accelerating structures for application to wakefield acceleration have predominantly used a dielectric-lined waveguide, due to its simple geometry (i.e. low fabrication cost). However, in comparison with the prevailing metallic disk-loaded accelerators, the dielectric-lined waveguide suffers from a lower Q-factor and lower shunt impedance. We are developing a new dielectric disk accelerator. The preliminary simulation shows that, even with 5×10−4 of loss tangent dielectric material $(E_{r}=50)$, we can achieve ~200 MΩ/m shunt impedance at 26 GHz traveling wave operation (the beam aperture is kept the same in the comparison), which is 4 times higher than those of the conventional dielectric loaded accelerator. The dielectric disk accelerator can overcome conventional limitations on high gradient, high efficiency dielectric accelerator, leading to a breakthrough in the performance of the two-beam accelerator, one of the most promising technologies in the category of advanced accelerator concepts for high energy physics research applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高梯度短脉冲双光束尾流场加速介质盘加速器
在过去的二十年中,用于尾流场加速的介电加速结构的理论和实验研究主要使用介电衬里波导,因为它的几何形状简单(即制造成本低)。然而,与目前流行的金属盘加载加速器相比,介质衬里波导的q因子和分流阻抗较低。我们正在研制一种新的介电盘加速器。初步仿真结果表明,即使正切介质材料$(E_{r}=50)$的损耗为5×10−4,在26 GHz行波工作下(比较中波束孔径保持不变),也能获得~200 MΩ/m的并联阻抗,比传统介质加载加速器高4倍。介质盘加速器克服了传统高梯度、高效率介质加速器的局限性,实现了双束加速器性能的突破,是高能物理研究应用中最具发展前景的先进加速器概念之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Variable Focus Lens for Field-Emitter Cathodes Multi-Stream Instability in UMER Investigating Instabilities of Long, Intense Laser Pulses in Plasma Wakefield Accelerators Head and Tail Compression of an Electron Beam High-Dielectric 3-D Printable Materials for Laser Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1